#! /usr/bin/env python # def legendre ( n ): #*****************************************************************************80 # ## LEGENDRE returns the LEGENDRE matrix. # # Example: # # N = 11 # # 1 . . . . . . . . . . / 1 # . 1 . . . . . . . . . / 1 # -1 . 3 . . . . . . . . / 2 # . -3 . 5 . . . . . . . / 2 # 3 . -30 . 35 . . . . . . / 8 # . 15 . -70 . 63 . . . . . / 8 # -5 . 105 . -315 . 231 . . . . / 16 # . -35 . 315 . -693 . 429 . . . / 16 # 35 . -1260 . 6930 . -12012 . 6435 . . / 128 # . 315 . -4620 . 18018 . -25740 . 12155 . / 128 # -63 . 3465 . -30030 . 90090 . -109395 . 46189 / 256 # # Properties: # # A is generally not symmetric: A' /= A. # # A is lower triangular. # # The elements of each row sum to 1. # # Because it has a constant row sum of 1, # A has an eigenvalue of 1, and # a (right) eigenvector of ( 1, 1, 1, ..., 1 ). # # A is reducible. # # The diagonals form a pattern of zero, positive, zero, negative. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,1] = 1.0 if ( 2 < n ): for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = - ( i - 1 ) * a[i-2,j] \ / ( i ); else: a[i,j] = ( ( 2 * i - 1 ) * a[i-1,j-1] \ + ( - i + 1 ) * a[i-2,j] ) \ / ( i ); return a def legendre_determinant ( n ): #*****************************************************************************80 # ## LEGENDRE_DETERMINANT computes the determinant of the LEGENDRE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 t = 1.0 for i in range ( 3, n + 1 ): t = t * float ( 2 * i - 3 ) / float ( i - 1 ) value = value * t return value def legendre_determinant_test ( ): #*****************************************************************************80 # ## LEGENDRE_DETERMINANT_TEST tests LEGENDRE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from legendre import legendre from r8mat_print import r8mat_print print '' print 'LEGENDRE_DETERMINANT_TEST' print ' LEGENDRE_DETERMINANT computes the LEGENDRE determinant.' m = 5 n = m a = legendre ( n ) r8mat_print ( m, n, a, ' LEGENDRE matrix:' ) value = legendre_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'LEGENDRE_DETERMINANT_TEST' print ' Normal end of execution.' return def legendre_inverse ( n ): #*****************************************************************************80 # ## LEGENDRE_INVERSE returns the inverse of the LEGENDRE matrix. # # Example: # # N = 11 # # 1 . . . . . . . . . . # . 1 . . . . . . . . . # 1 . 2 . . . . . . . . / 3 # . 3 . 2 . . . . . . . / 5 # 7 . 20 . 8 . . . . . . / 35 # . 27 . 28 . 8 . . . . . / 63 # 33 . 110 . 72 . 16 . . . . / 231 # . 143 . 182 . 88 . 16 . . . / 429 # 715 . 2600 . 2160 . 832 . 128 . . / 6435 # . 3315 . 4760 . 2992 . 960 . 128 . / 12155 # 4199 . 16150 . 15504 . 7904 . 2176 . 256 / 46189 # # Properties: # # A is nonnegative. # # The elements of each row sum to 1. # # Because it has a constant row sum of 1, # A has an eigenvalue of 1, and # a (right) eigenvector of ( 1, 1, 1, ..., 1 ). # # A is lower triangular. # # A is reducible. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,1] = 1.0 if ( 2 < n ): for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = ( j + 1 ) * a[i-1,j+1] / ( 2 * j + 3 ) elif ( j < n - 1 ): a[i,j] = ( j ) * a[i-1,j-1] / ( 2 * j - 1 ) \ + ( j + 1 ) * a[i-1,j+1] / ( 2 * j + 3 ) else: a[i,j] = ( j ) * a[i-1,j-1] / ( 2 * j - 1 ); return a def legendre_test ( ): #*****************************************************************************80 # ## LEGENDRE_TEST tests LEGENDRE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LEGENDRE_TEST' print ' LEGENDRE computes the LEGENDRE matrix.' m = 5 n = m a = legendre ( n ) r8mat_print ( m, n, a, ' LEGENDRE matrix:' ) print '' print 'LEGENDRE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_test ( ) timestamp ( )