#! /usr/bin/env python # def legendre_zeros ( n ): #*****************************************************************************80 # ## LEGENDRE_ZEROS computes the zeros of the Legendre polynomial. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the degree of the polynomial. # # Output, real X(N), the zeros of the polynomial. # import numpy as np x = np.zeros ( n ); e1 = float ( n * ( n + 1 ) ) m = ( n + 1 ) // 2 for i in range ( 1, m + 1 ): t = float ( 4 * i - 1 ) * np.pi / float ( 4 * n + 2 ) x0 = np.cos ( t ) * ( 1.0 - ( 1.0 - 1.0 / float ( n ) ) / float ( 8 * n * n ) ) pkm1 = 1.0 pk = x0 for k in range ( 2, n + 1 ): pkp1 = 2.0 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / float ( k ) pkm1 = pk pk = pkp1 d1 = float ( n ) * ( pkm1 - x0 * pk ) dpn = d1 / ( 1.0 - x0 * x0 ) d2pn = ( 2.0 * x0 * dpn - e1 * pk ) / ( 1.0 - x0 * x0 ) d3pn = ( 4.0 * x0 * d2pn + ( 2.0 - e1 ) * dpn ) / ( 1.0 - x0 * x0 ) d4pn = ( 6.0 * x0 * d3pn + ( 6.0 - e1 ) * d2pn ) / ( 1.0 - x0 * x0 ) u = pk / dpn v = d2pn / dpn # # Initial approximation H: # h = - u * ( 1.0 + 0.5 * u * ( v + u * ( v * v - d3pn / ( 3.0 * dpn ) ) ) ) # # Refine H using one step of Newton's method: # p = pk + h * ( dpn + 0.5 * h * ( d2pn + h / 3.0 \ * ( d3pn + 0.25 * h * d4pn ) ) ) dp = dpn + h * ( d2pn + 0.5 * h * ( d3pn + h * d4pn / 3.0 ) ) h = h - p / dp xtemp = x0 + h x[n-i] = xtemp x[i-1] = - xtemp fx = d1 - h * e1 * ( pk + 0.5 * h * ( dpn + h / 3.0 \ * ( d2pn + 0.25 * h * ( d3pn + 0.2 * h * d4pn ) ) ) ) if ( ( n % 2 ) == 1 ): x[m-1] = 0.0; return x def legendre_zeros_test ( ): #*****************************************************************************80 # ## LEGENDRE_ZEROS_TEST tests LEGENDRE_ZEROS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from r8vec_print import r8vec_print print '' print 'LEGENDRE_ZEROS_TEST' print ' LEGENDRE_ZEROS computes the zeros of the N-th Legendre polynomial.' for n in range ( 1, 8 ): l = legendre_zeros ( n ) r8vec_print ( n, l, ' Legendre zeros:' ) print '' print 'FRANK_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_zeros_test ( ) timestamp ( )