#! /usr/bin/env python # def leslie ( b, di, da ): #*****************************************************************************80 # ## LESLIE returns the LESLIE matrix, for population dynamics. # # Formula: # # 5/6 * ( 1.0 - DI ) 0 B 0 # 1/6 * ( 1.0 - DI ) 13/14 0 0 # 0 1/14 39/40 0 # 0 0 1/40 9/10 * ( 1 - DA ) # # Discussion: # # A human population is assumed to be grouped into the categories: # # X(1) = between 0 and 5+ # X(2) = between 6 and 19+ # X(3) = between 20 and 59+ # X(4) = between 60 and 69+ # # Humans older than 69 are ignored. Deaths occur in the 60 to 69 # year bracket at a relative rate of DA per year, and in the 0 to 5 # year bracket at a relative rate of DI per year. Deaths do not occurr # in the other two brackets. # # Births occur at a rate of B relative to the population in the # 20 to 59 year bracket. # # Thus, given the population vector X in a given year, the population # in the next year will be A * X. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # Ke Chen, Peter Giblin, Alan Irving, # Mathematical Explorations with MATLAB, # Cambridge University Press, 1999, # ISBN: 0-521-63920-4. # # Parameters: # # Input, real B, DI, DA, the birth rate, infant mortality rate, # and aged mortality rate. These should be positive values. # The mortality rates must be between 0.0 and 1.0. Reasonable # values might be B = 0.025, DI = 0.010, and DA = 0.100 # # Output, real A(4,4), the matrix. # import numpy as np if ( b < 0.0 ): print '' print 'LESLIE - Fatal error!' print ' 0 <= B is required.' if ( da < 0.0 or 1.0 < da ): print '' print 'LESLIE - Fatal error!' print ' 0 <= DA <= 1.0 is required.' if ( di < 0.0 or 1.0 < di ): print '' print 'LESLIE - Fatal error!' print ' 0 <= DI <= 1.0 is required.' a = np.zeros ( ( 4, 4, ) ) a[0,0] = 5.0 * ( 1.0 - di ) / 6.0 a[0,1] = 0.0 a[0,2] = b a[0,3] = 0.0 a[1,0] = ( 1.0 - di ) / 6.0 a[1,1] = 13.0 / 14.0 a[1,2] = 0.0 a[1,3] = 0.0 a[2,0] = 0.0 a[2,1] = 1.0 / 14.0 a[2,2] = 39.0 / 40.0 a[2,3] = 0.0 a[3,0] = 0.0 a[3,1] = 0.0 a[3,2] = 1.0 / 40.0 a[3,3] = 9.0 * ( 1.0 - da ) / 10.0 return a def leslie_determinant ( b, di, da ): #*****************************************************************************80 # ## LESLIE_DETERMINANT computes the determinant of the LESLIE matrix. # # Discussion: # # DETERM = a(4,4) * ( # a(1,1) * a(2,2) * a(3,3) # + a(1,3) * a(2,1) * a(3,2) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # # Input, real B, DI, DA, the birth rate, infant mortality rate, # and aged mortality rate. These should be positive values. # The mortality rates must be between 0.0 and 1.0. Reasonable # values might be B = 0.025, DI = 0.010, and DA = 0.100 # # Output, real VALUE, the determinant. # value = 9.0 * ( 1.0 - da ) / 10.0 * \ ( \ 5.0 * ( 1.0 - di ) / 6.0 \ * 13.0 / 14.0 \ * 39.0 / 40.0 \ + b \ * ( 1.0 - di ) / 6.0 \ * 1.0 / 14.0 \ ) return value def leslie_determinant_test ( ): #*****************************************************************************80 # ## LESLIE_DETERMINANT_TEST tests LESLIE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from leslie import leslie from r8mat_print import r8mat_print print '' print 'LESLIE_DETERMINANT_TEST' print ' LESLIE_DETERMINANT computes the LESLIE determinant.' m = 4 n = m b = 0.025 di = 0.010 da = 0.100 a = leslie ( b, di, da ) r8mat_print ( m, n, a, ' LESLIE matrix:' ) value = leslie_determinant ( b, di, da ) print ' Value = %g' % ( value ) print '' print 'LESLIE_DETERMINANT_TEST' print ' Normal end of execution.' return def leslie_test ( ): #*****************************************************************************80 # ## LESLIE_TEST tests LESLIE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LESLIE_TEST' print ' LESLIE computes the LESLIE matrix.' m = 4 n = m b = 0.025 di = 0.010 da = 0.100 a = leslie ( b, di, da ) r8mat_print ( m, n, a, ' LESLIE matrix:' ) print '' print 'LESLIE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) leslie_test ( ) timestamp ( )