#! /usr/bin/env python # def lesp ( m, n ): #*****************************************************************************80 # ## LESP returns the LESP matrix. # # Formula: # # if ( I - J == 1 ) # A(I,J) = 1 / I # else if ( I - J == 0 ) # A(I,J) = - ( 2*I+3 ) # else if ( I - J == 1 ) # A(I,J) = J # else # A(I,J) = 0.0 # # Example: # # M = 5, N = 5 # # -5 2 . . . # 1/2 -7 3 . . # . 1/3 -9 4 . # . . 1/4 -11 5 # . . . 1/5 -13 # # # Properties: # # The matrix is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is generally not symmetric: A' /= A. # # The eigenvalues are real, and smoothly distributed in [-2*N-3.5, -4.5]. # # The eigenvalues are sensitive. # # The matrix is similar to the symmetric tridiagonal matrix with # the same diagonal entries and with off-diagonal entries 1, # via a similarity transformation using the diagonal matrix # D = diagonal ( 1!, 2!, ..., N! ). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # Wim Lenferink, MN Spijker, # On the use of stability regions in the numerical analysis of initial # value problems, # Mathematics of Computation, # Volume 57, 1991, pages 221-237. # # Lloyd Trefethen, # Pseudospectra of matrices, # in Numerical Analysis 1991, # Proceedings of the 14th Dundee Conference, # D F Griffiths and G A Watson, editors, # Pitman Research Notes in Mathematics, volume 260, # Longman Scientific and Technical, Essex, UK, 1992, pages 234-266. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i - j == 1 ): a[i,j] = 1.0 / float ( i + 1 ) elif ( i - j == 0 ): a[i,j] = - float ( 2 * i + 5 ) elif ( i - j == -1 ): a[i,j] = float ( j + 1 ) return a def lesp_determinant ( n ): #*****************************************************************************80 # ## LESP_DETERMINANT returns the determinant of the LESP matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # determ_nm1 = - float ( 2 * n + 3 ) value = determ_nm1 if ( 1 < n ): determ_nm2 = determ_nm1 determ_nm1 = float ( ( 2 * n + 1 ) * ( 2 * n + 3 ) - 1 ) value = determ_nm1 if ( 2 < n ): for i in range ( n - 2, 0, -1 ): determ = - float ( 2 * i + 3 ) * determ_nm1 - determ_nm2 determ_nm2 = determ_nm1 determ_nm1 = determ value = determ return value def lesp_determinant_test ( ): #*****************************************************************************80 # ## LESP_DETERMINANT_TEST tests LESP_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from lesp import lesp from r8mat_print import r8mat_print print '' print 'LESP_DETERMINANT_TEST' print ' LESP_DETERMINANT computes the determinant of the LESP matrix.' print '' m = 5 n = m a = lesp ( m, n ) r8mat_print ( m, n, a, ' LESP matrix:' ) value = lesp_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'LESP_DETERMINANT_TEST' print ' Normal end of execution.' return def lesp_inverse ( n ): #*****************************************************************************80 # ## LESP_INVERSE returns the inverse of the LESP matrix. # # Discussion: # # This computation is an application of the TRIV_INVERSE function. # # Example: # # N = 5 # -0.2060 -0.0598 -0.0201 -0.0074 -0.0028 # -0.0150 -0.1495 -0.0504 -0.0184 -0.0071 # -0.0006 -0.0056 -0.1141 -0.0418 -0.0161 # -0.0000 -0.0001 -0.0026 -0.0925 -0.0356 # -0.0000 -0.0000 -0.0000 -0.0014 -0.0775 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 April 2015 # # Author: # # John Burkardt # # Reference: # # CM daFonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np from triv import triv_inverse x = np.zeros ( n - 1 ) for i in range ( 0, n - 1 ): x[i] = 1.0 / float ( i + 2 ) y = np.zeros ( n ) for i in range ( 0, n ): y[i] = float ( - 2 * i - 5 ) z = np.zeros ( n - 1 ) for i in range ( 0, n - 1 ): z[i] = float ( i + 2 ) a = triv_inverse ( n, x, y, z ) return a def lesp_test ( ): #*****************************************************************************80 # ## LESP_TEST tests LESP. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LESP_TEST' print ' LESP computes the LESP matrix.' m = 5 n = m a = lesp ( m, n ) r8mat_print ( m, n, a, ' LESP matrix:' ) print '' print 'LESP_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lesp_test ( ) timestamp ( )