#! /usr/bin/env python # def lietzke ( n ): #*****************************************************************************80 # ## LIETZKE returns the LIETZKE matrix. # # Formula: # # A(I,J) = N - abs ( I - J ) # # Example: # # N = 5 # # 5 4 3 2 1 # 4 5 4 3 2 # 3 4 5 4 3 # 2 3 4 5 4 # 1 2 3 4 5 # # Properties: # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # M Lietzke, R Stoughton, Marjorie Lietzke, # A Comparison of Several Methods for Inverting Large Symmetric # Positive Definite Matrices, # Mathematics of Computation, # Volume 18, Number 87, pages 449-456. # # Parameters: # # Input, integer N, the number of rows and columns # of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = float ( n - abs ( i - j ) ) return a def lietzke_condition ( n ): #*****************************************************************************80 # ## LIETZKE_CONDITION returns the L1 condition of the LIETZKE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # s = 0 k = n for i in range ( 0, n ): s = s + k if ( ( i % 2 ) == 0 ): k = k - 1 a_norm = float ( s ) if ( n == 1 ): b_norm = 0.25 elif ( n == 2 ): b_norm = 5.0 / 6.0 else: b_norm = 2.0 value = a_norm * b_norm return value def lietzke_determinant ( n ): #*****************************************************************************80 # ## LIETZKE_DETERMINANT computes the determinant of the LIETZKE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = float ( n + 1 ) * 2.0 ** ( n - 2 ) return value def lietzke_determinant_test ( ): #*****************************************************************************80 # ## LIETZKE_DETERMINANT_TEST tests LIETZKE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from lietzke import lietzke from r8mat_print import r8mat_print print '' print 'LIETZKE_DETERMINANT_TEST' print ' LIETZKE_DETERMINANT computes the LIETZKE determinant.' m = 5 n = m a = lietzke ( n ) r8mat_print ( m, n, a, ' LIETZKE matrix:' ) value = lietzke_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'LIETZKE_DETERMINANT_TEST' print ' Normal end of execution.' return def lietzke_inverse ( n ): #*****************************************************************************80 # ## LIETZKE_INVERSE returns the inverse of the LIETZKE matrix. # # Example: # # N = 5 # # 0.5833 -0.5000 0 0 0.0833 # -0.5000 1.0000 -0.5000 0 0 # 0 -0.5000 1.0000 -0.5000 0 # 0 0 -0.5000 1.0000 -0.5000 # 0.0833 0 0 -0.5000 0.5833 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns # of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = float ( n + 2 ) / float ( 2 * n + 2 ) for i in range ( 1, n - 1 ): a[i,i] = 1.0 a[n-1,n-1] = float ( n + 2 ) / float ( 2 * n + 2 ) if ( n == 2 ): for i in range ( 0, n - 1 ): a[i,i+1] = - 1.0 / 3.0 for i in range ( 1, n ): a[i,i-1] = - 1.0 / 3.0 else: for i in range ( 0, n - 1 ): a[i,i+1] = - 0.5 for i in range ( 1, n ): a[i,i-1] = - 0.5 a[0,n-1] = 1.0 / float ( 2 * n + 2 ) a[n-1,0] = 1.0 / float ( 2 * n + 2 ) return a def lietzke_test ( ): #*****************************************************************************80 # ## LIETZKE_TEST tests LIETZKE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LIETZKE_TEST' print ' LIETZKE computes the LIETZKE matrix.' m = 5 n = m a = lietzke ( n ) r8mat_print ( m, n, a, ' LIETZKE matrix:' ) print '' print 'LIETZKE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lietzke_test ( ) timestamp ( )