#! /usr/bin/env python # def line_adj ( n ): #*****************************************************************************80 # ## LINE_ADJ returns the LINE_ADJ matrix, for line adjacency matrix. # # Example: # # N = 5 # # 0 1 0 0 0 # 1 0 1 0 0 # 0 1 0 1 0 # 0 0 1 0 1 # 0 0 0 1 0 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # A is an adjacency matrix for a set of points arranged in a line. # # A has a zero diagonal. # # A is a zero/one matrix. # # The row and column sums are all 2, except for the first and last # rows and columns which have a sum of 1. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i - 1 ): a[i,j] = 1.0 elif ( j == i + 1 ): a[i,j] = 1.0 return a def line_adj_determinant ( n ): #*****************************************************************************80 # ## LINE_ADJ_DETERMINANT computes the determinant of the LINE_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # if ( ( n % 4 ) == 1 ): value = 0.0 elif ( ( n % 4 ) == 2 ): value = - 1.0 elif ( ( n % 4 ) == 3 ): value = 0.0 elif ( ( n % 4 ) == 0 ): value = + 1.0 return value def line_adj_determinant_test ( ): #*****************************************************************************80 # ## LINE_ADJ_DETERMINANT_TEST tests LINE_ADJ_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from line_adj import line_adj from r8mat_print import r8mat_print print '' print 'LINE_ADJ_DETERMINANT_TEST' print ' LINE_ADJ_DETERMINANT computes the LINE_ADJ determinant.' m = 5 n = m a = line_adj ( n ) r8mat_print ( m, n, a, ' LINE_ADJ matrix:' ) value = line_adj_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'LINE_ADJ_DETERMINANT_TEST' print ' Normal end of execution.' return def line_adj_eigen_right ( n ): #*****************************************************************************80 # ## LINE_ADJ_EIGEN_RIGHT returns the right eigenvectors of the LINE_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the right eigenvector matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( ( i + 1 ) * ( j + 1 ) ) * np.pi / float ( n + 1 ) a[i,j] = np.sqrt ( 2.0 / float ( n + 1 ) ) * np.sin ( angle ) return a def line_adj_eigenvalues ( n ): #*****************************************************************************80 # ## LINE_ADJ_EIGENVALUES returns the eigenvalues of the LINE_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n ): angle = float ( i + 1 ) * np.pi / float ( n + 1 ) lam[i] = 2.0 * np.cos ( angle ) return lam def line_adj_inverse ( n ): #*****************************************************************************80 # ## LINE_ADJ_INVERSE returns the inverse of the LINE_ADJ matrix. # # Example: # # N = 6: # # 0 1 0 -1 0 1 # 1 0 0 0 0 0 # 0 0 0 1 0 -1 # -1 0 1 0 0 0 # 0 0 0 0 0 1 # 1 0 -1 0 1 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) == 1 ): print '' print 'LINE_ADJ_INVERSE - Fatal error!' print ' The matrix is singular for odd N.' exit ( 'LINE_ADJ_INVERSE - Fatal error!' ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): if ( ( i % 2 ) == 0 ): for j in range ( i, n - 1, 2 ): if ( j == i ): p = 1.0 else: p = - p a[i,j+1] = p a[j+1,i] = p return a def line_adj_null_left ( m, n ): #*****************************************************************************80 # ## LINE_ADJ_NULL_LEFT returns a left null vector of the LINE_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(M), the vector # import numpy as np if ( ( m % 2 ) == 0 ): print '' print 'LINE_ADJ_NULL_LEFT - Fatal error!' print ' For M even, there is no null vector.' error ( 'LINE_ADJ_NULL_LEFT - Fatal error!' ) x = np.zeros ( m ) s = 1.0 for i in range ( 0, m, 2 ): x[i] = s s = -s return x def line_adj_null_right ( m, n ): #*****************************************************************************80 # ## LINE_ADJ_NULL_RIGHT returns a right null vector of the LINE_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), the vector # import numpy as np if ( ( n % 2 ) == 0 ): print '' print 'LINE_ADJ_NULL_RIGHT - Fatal error!' print ' For N even, there is no null vector.' error ( 'LINE_ADJ_NULL_RIGHT - Fatal error!' ) x = np.zeros ( n ) s = 1.0 for i in range ( 0, n, 2 ): x[i] = s s = -s return x def line_adj_test ( ): #*****************************************************************************80 # ## LINE_ADJ_TEST tests LINE_ADJ. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LINE_ADJ_TEST' print ' LINE_ADJ computes the LINE_ADJ matrix.' m = 5 n = m a = line_adj ( n ) r8mat_print ( m, n, a, ' LINE_ADJ matrix:' ) print '' print 'LINE_ADJ_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) line_adj_test ( ) line_adj_determinant_test ( ) timestamp ( )