#! /usr/bin/env python # def lotkin ( m, n ): #*****************************************************************************80 # ## LOTKIN returns the LOTKIN matrix. # # Formula: # # if ( I = 1 ) # A(I,J) = 1 # else # A(I,J) = 1 / ( I + J - 1 ) # # Example: # # N = 5 # # 1 1 1 1 1 # 1/2 1/3 1/4 1/5 1/6 # 1/3 1/4 1/5 1/6 1/7 # 1/4 1/5 1/6 1/7 1/8 # 1/5 1/6 1/7 1/8 1/9 # # Properties: # # A is the Hilbert matrix with the first row set to all 1's. # # A is generally not symmetric: A' /= A. # # A is ill-conditioned. # # A has many negative eigenvalues of small magnitude. # # The inverse of A has all integer elements, and is known explicitly. # # For N = 6, the eigenvalues are: # 2.132376, # -0.2214068, # -0.3184330 D-1, # -0.8983233 D-3, # -0.1706278 D-4, # -0.1394499 D-6. # # det ( A(N) ) = ( -1 )^(N-1) / DELTA(N) # # where # # DELTA(N) = COMB ( 2*N-2, N-2 ) * COMB ( 2*N-2, N-1 ) # * ( 2*N-1) * DELTA(N-1), # DELTA(1) = 1. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.9, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 38, # LC: QA263.G68. # # Max Lotkin, # A set of test matrices, # Mathematics Tables and Other Aids to Computation, # Volume 9, 1955, pages 153-161. # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == 0 ): a[i,j] = 1.0 else: a[i,j] = 1.0 / float ( i + j + 1 ) return a def lotkin_determinant ( n ): #*****************************************************************************80 # ## LOTKIN_DETERMINANT returns the determinant of the LOTKIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from r8_choose import r8_choose delta = 1.0 for i in range ( 2, n + 1 ): delta = - r8_choose ( 2 * i - 2, i - 2 ) * r8_choose ( 2 * i - 2, i - 1 ) \ * float ( 2 * i - 1 ) * delta value = 1.0 / delta return value def lotkin_determinant_test ( ): #*****************************************************************************80 # ## LOTKIN_DETERMINANT_TEST tests LOTKIN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from lotkin import lotkin from r8mat_print import r8mat_print print '' print 'LOTKIN_DETERMINANT_TEST' print ' LOTKIN_DETERMINANT computes the determinant of the LOTKIN matrix.' print '' m = 4 n = m a = lotkin ( m, n ) r8mat_print ( m, n, a, ' LOTKIN matrix:' ) value = lotkin_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'LOTKIN_DETERMINANT_TEST' print ' Normal end of execution.' return def lotkin_inverse ( n ): #*****************************************************************************80 # ## LOTKIN_INVERSE returns the inverse of the LOTKIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_choose import r8_choose from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = r8_mop ( n - i - 1 ) \ * r8_choose ( n + i, i ) \ * r8_choose ( n, i + 1 ) else: a[i,j] = r8_mop ( i - j + 1 ) * float ( i + 1 ) \ * r8_choose ( i + j + 1, j ) \ * r8_choose ( i + j, j - 1 ) \ * r8_choose ( n + i, i + j + 1 ) \ * r8_choose ( n + j, i + j + 1 ) return a def lotkin_test ( ): #*****************************************************************************80 # ## LOTKIN_TEST tests LOTKIN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LOTKIN_TEST' print ' LOTKIN computes the LOTKIN matrix.' m = 4 n = m a = lotkin ( m, n ) r8mat_print ( m, n, a, ' LOTKIN matrix:' ) print '' print 'LOTKIN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lotkin_test ( ) timestamp ( )