#! /usr/bin/env python # def maxij ( m, n ): #*****************************************************************************80 # ## MAXIJ returns the MAXIJ matrix. # # Discussion: # # This matrix is occasionally known as the "Boothroyd MAX" matrix. # # Formula: # # A(I,J) = max(I,J) # # Example: # # N = 5 # # 1 2 3 4 5 # 2 2 3 4 5 # 3 3 3 4 5 # 4 4 4 4 5 # 5 5 5 5 5 # # Properties: # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The inverse of A is tridiagonal. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.13, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 42, # LC: QA263.G68. # # Parameters: # # Input, integer M, N, the number of rows and columns # of the matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for j in range ( 0, n ): for i in range ( 0, m ): a[i,j] = max ( i, j ) + 1 return a def maxij_condition ( n ): #*****************************************************************************80 # ## MAXIJ_CONDITION returns the L1 condition of the MAXIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = n * n if ( n == 1 ): b_norm = 1.0 elif ( n == 2 ): b_norm = 2.0 else: b_norm = 4.0 value = a_norm * b_norm return value def maxij_condition_test ( ): #*****************************************************************************80 # ## MAXIJ_CONDITION_TEST tests MAXIJ_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # from maxij import maxij from r8mat_print import r8mat_print print '' print 'MAXIJ_CONDITION_TEST' print ' MAXIJ_CONDITION computes the condition of the MAXIJ matrix.' print '' n = 4 a = maxij ( n, n ) r8mat_print ( n, n, a, ' MAXIJ matrix:' ) value = maxij_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'MAXIJ_CONDITION_TEST' print ' Normal end of execution.' return def maxij_determinant ( n ): #*****************************************************************************80 # ## MAXIJ_DETERMINANT returns the determinant of the MAXIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = float ( n ) return value def maxij_determinant_test ( ): #*****************************************************************************80 # ## MAXIJ_DETERMINANT_TEST tests MAXIJ_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # from maxij import maxij from r8mat_print import r8mat_print print '' print 'MAXIJ_DETERMINANT_TEST' print ' MAXIJ_DETERMINANT computes the determinant of the MAXIJ matrix.' print '' n = 4 a = maxij ( n, n ) r8mat_print ( n, n, a, ' MAXIJ matrix:' ) value = maxij_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'MAXIJ_DETERMINANT_TEST' print ' Normal end of execution.' return def maxij_inverse ( n ): #*****************************************************************************80 # ## MAXIJ_INVERSE returns the inverse of the MAXIJ matrix. # # Formula: # # if ( I = 1 and J = 1 ) # A(I,J) = -1 # else if ( I = N and J = N ) # A(I,J) = -(N-1)/N # else if ( I = J ) # A(I,J) = -2 # else if ( J = I-1 or J = I + 1 ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # N = 5 # # -1 1 0 0 0 # 1 -2 1 0 0 # 0 1 -2 1 0 # 0 0 1 -2 1 # 0 0 0 1 -4/5 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is "almost" equal to the second difference matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i ): if ( i == 0 ): a[i,j] = - 1.0 elif ( i < n - 1 ): a[i,j] = - 2.0 else: a[i,j] = - float ( n - 1 ) / float ( n ) elif ( j == i - 1 or j == i + 1 ): a[i,j] = 1.0; return a def maxij_plu ( n ): #*****************************************************************************80 # ## MAXIJ_PLU returns the PLU factors of the MAXIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np from i4_wrap import i4_wrap p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i4_wrap ( j - i, 1, n ) == 1 ): p[i,j] = 1.0 l = np.zeros ( ( n, n ) ) l[0,0] = 1.0 j = 0 for i in range ( 1, n ): l[i,j] = float ( i ) / float ( n ) for j in range ( 1, n ): l[j,j] = 1.0 u = np.zeros ( ( n, n ) ) for j in range ( 0, n ): u[0,j] = float ( n ) for i in range ( 1, n ): for j in range ( i, n ): u[i,j] = float ( j + 1 - i ) return p, l, u def maxij_test ( ): #*****************************************************************************80 # ## MAXIJ_TEST tests MAXIJ. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'MAXIJ_TEST' print ' MAXIJ computes the MAXIJ matrix.' m = 5 n = 5 a = maxij ( m, n ) r8mat_print ( m, n, a, ' MAXIJ matrix:' ) print '' print 'MAXIJ_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) maxij_test ( ) timestamp ( )