#! /usr/bin/env python # def milnes ( m, n, x ): #*****************************************************************************80 # ## MILNES returns the MILNES matrix. # # Formula: # # If ( I <= J ) # A(I,J) = 1 # else # A(I,J) = X(J) # # Example: # # M = 5, N = 5, X = ( 4, 7, 3, 8 ) # # 1 1 1 1 1 # 4 1 1 1 1 # 4 7 1 1 1 # 4 7 3 1 1 # 4 7 3 8 1 # # M = 3, N = 6, X = ( 5, 7 ) # # 1 1 1 1 1 # 5 1 1 1 1 # 5 7 1 1 1 # # M = 5, N = 3, X = ( 5, 7, 8 ) # # 1 1 1 # 5 1 1 # 5 7 1 # 5 7 8 # 5 7 8 # # Properties: # # A is generally not symmetric: A' /= A. # # det ( A ) = ( 1 - X(1) ) * ( 1 - X(2) ) * ... * ( 1 - X(N-1) ). # # A is singular if and only if X(I) = 1 for any I. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.14, Example 5.24, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 52, page 105, # LC: QA263.G68. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Input, real X(*), the lower column values. # If M <= N, then X should be dimensioned M-1. # If N < M, X should be dimensioned N. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = 1.0 else: a[i,j] = x[j] return a def milnes_determinant ( n, x ): #*****************************************************************************80 # ## MILNES_DETERMINANT computes the determinant of the MILNES matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the parameter vector. # # Output, real VALUE, the determinant. # value = 1.0 if ( 1 < n ): for i in range ( 0, n - 1 ): value = value * ( 1.0 - x[i] ) return value def milnes_determinant_test ( ): #*****************************************************************************80 # ## MILNES_DETERMINANT_TEST tests MILNES_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # from milnes import milnes from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'MILNES_DETERMINANT_TEST' print ' MILNES_DETERMINANT computes the MILNES determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = milnes ( m, n, x ) r8mat_print ( m, n, a, ' MILNES matrix:' ) value = milnes_determinant ( n, x ) print '' print ' Value = %g' % ( value ) print '' print 'MILNES_DETERMINANT_TEST' print ' Normal end of execution.' return def milnes_inverse ( n, x ): #*****************************************************************************80 # #% MILNES_INVERSE returns the inverse of the MILNES matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.24, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 52, # LC: QA263.G68. # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N-1), the lower column values. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j and i != n - 1 ): a[i,j] = 1.0 / ( 1.0 - x[i] ) elif ( j == i + 1 and i != n - 1 ): a[i,j] = -1.0 / ( 1.0 - x[i] ) elif ( i == n - 1 and j != 0 and j != n - 1 ): a[i,j] = ( x[j-1] - x[j] ) / ( ( 1.0 - x[j] ) * ( 1.0 - x[j-1] ) ) elif ( i == n - 1 and j == 0 ): a[i,j] = - x[0] / ( 1.0 - x[0] ) elif ( i == n - 1 and j == n - 1 ): a[i,j] = 1.0 / ( 1.0 - x[n-2] ) return a def milnes_test ( ): #*****************************************************************************80 # ## MILNES_TEST tests MILNES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'MILNES_TEST' print ' MILNES computes the MILNES matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = milnes ( m, n, x ) r8mat_print ( m, n, a, ' MILNES matrix:' ) print '' print 'MILNES_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) milnes_test ( ) timestamp ( )