#! /usr/bin/env python # def minij ( m, n ): #*****************************************************************************80 # ## MINIJ returns the MINIJ matrix. # # Formula: # # A(I,J) = min ( I, J ) # # Example: # # N = 5 # # 1 1 1 1 1 # 1 2 2 2 2 # 1 2 3 3 3 # 1 2 3 4 4 # 1 2 3 4 5 # # Properties: # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is positive definite. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The inverse of A is tridiagonal. # # The eigenvalues of A are # # LAMBDA(I) = 0.5 / ( 1 - cos ( ( 2 * I - 1 ) * pi / ( 2 * N + 1 ) ) ), # # For N = 12, the characteristic polynomial is # P(X) = X^12 - 78 X^11 + 1001 X^10 - 5005 X^9 + 12870 X^8 # - 19448 X^7 + 18564 X^6 - 11628 X^5 + 4845 X^4 - 1330 X^3 # + 231 X^2 - 23 X + 1. # # (N+1)*ONES(N) - A also has a tridiagonal inverse. # # Gregory and Karney consider the matrix defined by # # B(I,J) = N + 1 - MAX(I,J) # # which is equal to the MINIJ matrix, but with the rows and # columns reversed. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.12, Example 4.14, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 41, page 74, # LC: QA263.G68. # # Daniel Rutherford, # Some continuant determinants arising in physics and chemistry II, # Proceedings of the Royal Society Edinburgh, # Volume 63, A, 1952, pages 232-241. # # John Todd, # Basic Numerical Mathematics, Vol. 2: Numerical Algebra, # Academic Press, 1977, page 158. # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Input, integer M, N, the number of rows and columns # of the matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for j in range ( 0, n ): for i in range ( 0, m ): a[i,j] = min ( i, j ) + 1 return a def minij_condition ( n ): #*****************************************************************************80 # ## MINIJ_CONDITION returns the L1 condition of the MINIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = float ( n * ( n + 1 ) ) / 2.0 if ( n == 1 ): b_norm = 1.0 elif ( n == 2 ): b_norm = 3.0 else: b_norm = 4.0 value = a_norm * b_norm return value def minij_condition_test ( ): #*****************************************************************************80 # ## MINIJ_CONDITION_TEST tests MINIJ_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # from minij import minij from r8mat_print import r8mat_print print '' print 'MINIJ_CONDITION_TEST' print ' MINIJ_CONDITION computes the condition of the MINIJ matrix.' print '' n = 4 a = minij ( n, n ) r8mat_print ( n, n, a, ' MINIJ matrix:' ) value = minij_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'MINIJ_CONDITION_TEST' print ' Normal end of execution.' return def minij_determinant ( n ): #*****************************************************************************80 # ## MINIJ_DETERMINANT returns the determinant of the MINIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # import numpy as np r8_pi = 3.141592653589793 value = 1.0 for i in range ( 0, n ): angle = float ( 2 * i + 1 ) * r8_pi / float ( 2 * n + 1 ) value = value * 0.5 / ( 1.0 - np.cos ( angle ) ) return value def minij_determinant_test ( ): #*****************************************************************************80 # ## MINIJ_DETERMINANT_TEST tests MINIJ_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # from minij import minij from r8mat_print import r8mat_print print '' print 'MINIJ_DETERMINANT_TEST' print ' MINIJ_DETERMINANT computes the determinant of the MINIJ matrix.' print '' n = 4 a = minij ( n, n ) r8mat_print ( n, n, a, ' MINIJ matrix:' ) value = minij_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'MINIJ_DETERMINANT_TEST' print ' Normal end of execution.' return def minij_eigenvalues ( n ): #*****************************************************************************80 # ## MINIJ_EIGENVALUES returns the eigenvalues of the MINIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = zeros ( n, 1 ); for i in range ( 0, n ): angle = float ( 2 * i + 1 ) * np.pi / float ( 2 * n + 1 ) lam[i] = 0.5 / ( 1.0 - np.cos ( angle ) ) return lam def minij_inverse ( n ): #*****************************************************************************80 # ## MINIJ_INVERSE returns the inverse of the MINIJ matrix. # # Formula: # # A(I,J) = -1 if J=I-1 or J=I+1 # A(I,J) = 2 if J=I and J is not N. # A(I,J) = 1 if J=I and J=N. # A(I,J) = 0 otherwise # # Example: # # N = 5 # # 2 -1 0 0 0 # -1 2 -1 0 0 # 0 -1 2 -1 0 # 0 0 -1 2 -1 # 0 0 0 -1 1 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is "almost" equal to the second difference matrix, # as computed by DIF. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): if ( i < n - 1 ): a[i,j] = 2.0 else: a[i,j] = 1.0 elif ( i == j + 1 or i == j - 1 ): a[i,j] = -1.0 return a def minij_llt ( n ): #*****************************************************************************80 # ## MINIJ_LLT returns the Cholesky factor of the MINIJ matrix. # # Example: # # N = 5 # # 1 0 0 0 0 # 1 1 0 0 0 # 1 1 1 0 0 # 1 1 1 1 0 # 1 1 1 1 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i + 1 ): a[i,j] = 1.0 return a def minij_plu ( n ): #*****************************************************************************80 # ## MINIJ_PLU returns the PLU factors of the MINIJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 June 2011 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N) the PLU factors. # import numpy as np p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == j ): p[i,j] = 1.0 l = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( j, n ): l[i,j] = 1.0 u = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, j + 1 ): u[i,j] = 1.0 return p, l, u def minij_test ( ): #*****************************************************************************80 # ## MINIJ_TEST tests MINIJ. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'MINIJ_TEST' print ' MINIJ computes the MINIJ matrix.' m = 5 n = 5 a = minij ( m, n ) r8mat_print ( m, n, a, ' MINIJ matrix:' ) print '' print 'MINIJ_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) minij_test ( ) timestamp ( )