#! /usr/bin/env python # def moler1 ( alpha, m, n ): #*****************************************************************************80 # ## MOLER1 returns the MOLER1 matrix. # # Formula: # # If ( I = J ) # A(I,J) = min ( I-1, J-1 ) * ALPHA^2 + 1 # else # A(I,J) = min ( I-1, J-1 ) * ALPHA^2 + ALPHA # # Example: # # ALPHA = 2, N = 5 # # 1 2 2 2 2 # 2 5 6 6 6 # 2 6 9 10 10 # 2 6 10 13 14 # 2 6 10 14 17 # # Properties: # # Successive elements of each diagonal increase by an increment of ALPHA^2. # # A is the product of B' * B, where B is the matrix returned by # # B = TRIW ( ALPHA, N-1, N ). # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is positive definite. # # If ALPHA = -1, A(I,J) = min ( I, J ) - 2, A(I,I)=I. # # A has one small eigenvalue. # # If ALPHA is integral, then A is integral. # If A is integral, then det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # John Nash, # Compact Numerical Methods for Computers: Linear Algebra and # Function Minimisation, # John Wiley, 1979, # pages 76 and 210. # # Parameters: # # Input, real ALPHA, the scalar that defines the Moler matrix. # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == j ): a[i,j] = min ( i, j ) * alpha * alpha + 1.0 else: a[i,j] = min ( i, j ) * alpha * alpha + alpha return a def moler1_determinant ( alpha, n ): #*****************************************************************************80 # ## MOLER1_DETERMINANT returns the determinant of the MOLER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def moler1_determinant_test ( ): #*****************************************************************************80 # ## MOLER1_DETERMINANT_TEST tests MOLER1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # from moler1 import moler1 from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'MOLER1_DETERMINANT_TEST' print ' MOLER1_DETERMINANT computes the determinant of the MOLER1 matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = moler1 ( alpha, n ) r8mat_print ( m, n, a, ' MOLER1 matrix:' ) value = moler1_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'MOLER1_DETERMINANT_TEST' print ' Normal end of execution.' return def moler1_inverse ( alpha, n ): #*****************************************************************************80 # ## MOLER1_INVERSE returns the inverse of the MOLER1 matrix. # # Formula: # # if ( I = J ) # A(I,J) = min ( N-I, N-J ) * ALPHA^2 + 1 # else # A(I,J) = (-1)^(I+J) * min ( N-I, N-J ) * ALPHA^2 + ALPHA # # Example: # # ALPHA = 2, N = 5 # # 17 -14 10 -6 2 # -14 13 -10 6 -2 # 10 -10 9 -6 2 # -6 6 -6 5 -2 # 2 -2 2 -2 1 # # Properties: # # The matrix is symmetric. # # Successive elements of each diagonal decrease by ALPHA**2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar that defines the inverse # Moler matrix. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np v = np.zeros ( n ) v[0] = 1.0 v[1] = - alpha for i in range ( 2, n ): v[i] = - ( alpha - 1.0 ) * v[i-1] a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): t = 0.0 for k in range ( 0, n - j ): t = t + v[j-i+k] * v[k] a[i,j] = t else: t = 0.0 for k in range ( 0, n - i ): t = t + v[k] * v[i-j+k] a[i,j] = t return a def moler1_llt ( alpha, n ): #*****************************************************************************80 # ## MOLER1_LLT returns the Cholesky factor of the MOLER1 matrix. # # Example: # # ALPHA = 2, N = 5 # # 1 0 0 0 0 # 2 1 0 0 0 # 2 2 1 0 0 # 2 2 2 1 0 # 2 2 2 2 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): a[j,j] = 1.0 for i in range ( j + 1, n ): a[i,j] = alpha return a def moler1_plu ( alpha, n ): #*****************************************************************************80 # ## MOLER1_PLU returns the PLU factors of the MOLER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Reference: # # John Nash, # Compact Numerical Methods for Computers: Linear Algebra and # Function Minimisation, # Second Edition, # Taylor & Francis, 1990, # ISBN: 085274319X, # LC: QA184.N37. # # Parameters: # # Input, real ALPHA, the parameter. # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): p[j,j] = 1.0 l = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == j ): l[i,j] = 1.0 elif ( j < i ): l[i,j] = alpha u = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, j ): u[i,j] = alpha u[j,j] = 1.0 return p, l, u def moler1_test ( ): #*****************************************************************************80 # ## MOLER1_TEST tests MOLER1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'MOLER1_TEST' print ' MOLER1 computes the MOLER1 matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = moler1 ( alpha, m, n ) r8mat_print ( m, n, a, ' MOLER1 matrix:' ) print '' print 'MOLER1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) moler1_test ( ) timestamp ( )