#! /usr/bin/env python # def moler3 ( m, n ): #*****************************************************************************80 # ## MOLER3 returns the MOLER3 matrix. # # Formula: # # if ( I == J ) # A(I,J) = I # else # A(I,J) = min(I,J) - 2 # # Example: # # N = 5 # # 1 -1 -1 -1 -1 # -1 2 0 0 0 # -1 0 3 1 1 # -1 0 1 4 2 # -1 0 1 2 5 # # Properties: # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is positive definite. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A has a simple Cholesky factorization. # # A has one small eigenvalue. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == j ): a[i,j] = i + 1 else: a[i,j] = min ( i, j ) - 1 return a def moler3_determinant ( n ): #*****************************************************************************80 # ## MOLER3_DETERMINANT returns the determinant of the MOLER3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def moler3_determinant_test ( ): #*****************************************************************************80 # ## MOLER3_DETERMINANT_TEST tests MOLER3_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # from moler3 import moler3 from r8mat_print import r8mat_print print '' print 'MOLER3_DETERMINANT_TEST' print ' MOLER3_DETERMINANT computes the determinant of the MOLER3 matrix.' print '' m = 5 n = m a = moler3 ( m, n ) r8mat_print ( m, n, a, ' MOLER3 matrix:' ) value = moler3_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'MOLER3_DETERMINANT_TEST' print ' Normal end of execution.' return def moler3_inverse ( n ): #*****************************************************************************80 # ## MOLER3_INVERSE returns the inverse of the MOLER3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8mat_mtm import r8mat_mtm l = np.zeros ( ( n, n ) ) for j in range ( 0, n ): l[j,j] = 1.0 value = 1.0 for i in range ( j + 1, n ): l[i,j] = value value = value * 2.0 a = r8mat_mtm ( n, n, n, l, l ) return a def moler3_llt ( n ): #*****************************************************************************80 # ## MOLER3_LLT returns the Cholesky factor of the MOLER3 matrix. # # Example: # # N = 5 # # 1 0 0 0 0 # -1 1 0 0 0 # -1 -1 1 0 0 # -1 -1 -1 1 0 # -1 -1 -1 -1 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i ): a[i,j] = -1.0 a[i,i] = 1.0 return a def moler3_plu ( n ): #*****************************************************************************80 # ## MOLER3_PLU returns the PLU factors of the MOLER3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N) the PLU factors. # import numpy as np p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): p[j,j] = 1.0 l = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i ): l[i,j] = -1.0 l[i,i] = 1.0 u = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, j ): u[i,j] = -1.0 u[j,j] = 1.0 return p, l, u def moler3_test ( ): #*****************************************************************************80 # ## MOLER3_TEST tests MOLER3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'MOLER3_TEST' print ' MOLER3 computes the MOLER3 matrix.' m = 5 n = m a = moler3 ( m, n ) r8mat_print ( m, n, a, ' MOLER3 matrix:' ) print '' print 'MOLER3_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) moler3_test ( ) timestamp ( )