#! /usr/bin/env python # def neumann ( nrow, ncol ): #*****************************************************************************80 # ## NEUMANN returns the NEUMANN matrix. # # Formula: # # I1 = 1 + ( I - 1 ) / NROW # I2 = I - ( I1 - 1 ) * NROW # J1 = 1 + ( J - 1 ) / NROW # # if ( I = J ) # A(I,J) = 4 # elseif ( I = J-1 ) # If ( I2 = 1 ) # A(I,J) = -2 # else # A(I,J) = -1 # elseif ( I = J+1 ) # If ( I2 = NROW ) # A(I,J) = -2 # else # A(I,J) = -1 # elseif ( I = J - NROW ) # if ( J1 = 2 ) # A(I,J) = -2 # else # A(I,J) = -1 # elseif ( I = J + NROW ) # if ( J1 = NCOL-1 ) # A(I,J) = -2 # else # A(I,J) = -1 # else # A(I,J) = 0.0 # # Example: # # NROW = NCOL = 3 # # 4 -2 0 | -2 0 0 | 0 0 0 # -1 4 -1 | 0 -2 0 | 0 0 0 # 0 -2 4 | 0 0 -2 | 0 0 0 # ---------------------------- # -1 0 0 | 4 -1 0 | -1 0 0 # 0 -1 0 | -1 4 -1 | 0 -1 0 # 0 0 -1 | 0 -1 4 | 0 0 -1 # ---------------------------- # 0 0 0 | -2 0 0 | 4 -2 0 # 0 0 0 | 0 -2 0 | -1 4 -1 # 0 0 0 | 0 0 -2 | 0 -2 4 # # Properties: # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is block tridiagonal. # # A results from discretizing Neumann's equation with the # 5 point operator on a mesh of NROW by NCOL points. # # A is singular. # # A has the null vector ( 1, 1, ..., 1 ). # # det ( A ) = 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # Gene Golub, Charles Van Loan, # Matrix Computations, second edition, # Johns Hopkins University Press, Baltimore, Maryland, 1989 # (Section 4.5.4). # # Parameters: # # Input, integer NROW, NCOL, the number of rows and columns # in the grid. # # Output, integer N, the order of the matrix, which # is NROW*NCOL. # # Output, real A(NROW*NCOL,NROW*NCOL), the NROW*NCOL # by NROW*NCOL matrix. # import numpy as np n = nrow * ncol a = np.zeros ( ( n, n ) ) i = 0 for i1 in range ( 0, nrow ): for j1 in range ( 0, ncol ): if ( 0 < i1 ): j = i - nrow else: j = i + nrow a[i,j] = a[i,j] - 1.0 if ( 0 < j1 ): j = i - 1 else: j = i + 1 a[i,j] = a[i,j] - 1.0 j = i a[i,j] = 4.0 if ( j1 < ncol - 1 ): j = i + 1 else: j = i - 1 a[i,j] = a[i,j] - 1.0 if ( i1 < nrow - 1 ): j = i + nrow else: j = i - nrow a[i,j] = a[i,j] - 1.0 i = i + 1 return a def neumann_determinant ( row_num, col_num ): #*****************************************************************************80 # ## NEUMANN_DETERMINANT returns the determinant of the NEUMANN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer ROW_NUM, COL_NUM, the number of rows and columns in the grid. # # Output, real VALUE, the determinant. # value = 0.0 return value def neumann_determinant_test ( ): #*****************************************************************************80 # ## NEUMANN_DETERMINANT_TEST tests NEUMANN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # from neumann import neumann from r8mat_print import r8mat_print print '' print 'NEUMANN_DETERMINANT_TEST' print ' NEUMANN_DETERMINANT computes the determinant of the NEUMANN matrix.' print '' row_num = 3 col_num = 3 m = row_num * col_num n = m a = neumann ( row_num, col_num ) r8mat_print ( m, n, a, ' NEUMANN matrix:' ) value = neumann_determinant ( row_num, col_num ) print '' print ' Value = %g' % ( value ) print '' print 'NEUMANN_DETERMINANT_TEST' print ' Normal end of execution.' return def neumann_null_right ( nrow, ncol ): #*****************************************************************************80 # ## NEUMANN_NULL_RIGHT returns a right null vector of the NEUMANN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer NROW, NCOL, the number of rows and columns # in the grid. # # Output, real X(NROW*NCOL), the null vector. # import numpy as np x = np.ones ( nrow * ncol ) return x def neumann_test ( ): #*****************************************************************************80 # ## NEUMANN_TEST tests NEUMANN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'NEUMANN_TEST' print ' NEUMANN computes the NEUMANN matrix.' row_num = 3 col_num = 3 m = row_num * col_num n = m a = neumann ( row_num, col_num ) r8mat_print ( m, n, a, ' NEUMANN matrix:' ) print '' print 'NEUMANN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) neumann_test ( ) neumann_determinant_test ( ) timestamp ( )