#! /usr/bin/env python # def ortega ( n, u, v, d ): #*****************************************************************************80 # ## ORTEGA returns the ORTEGA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # James Ortega, # Generation of Test Matrices by Similarity Transformations, # Communications of the ACM, # Volume 7, 1964, pages 377-378. # # Parameters: # # Input, integer N, the order of the matrix. # 2 <= N. # # Input, real U(N), V(N), vectors which define the matrix. # U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are # integers, then the matrix, inverse, eigenvalues, and eigenvectors # will be integers. # # Input, real D(N), the desired eigenvalues. # # Output, real A(N,N), the matrix. # import numpy as np vtu = np.dot ( v, u ) beta = 1.0 / ( 1.0 + vtu ) a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): for k in range ( 0, n ): if ( i == k ): bik = 1.0 + u[i] * v[k] else: bik = u[i] * v[k] if ( k == j ): ckj = 1.0 - beta * u[k] * v[j] else: ckj = - beta * u[k] * v[j] a[i,j] = a[i,j] + bik * d[k] * ckj return a def ortega_determinant ( n, u, v, d ): #*****************************************************************************80 # ## ORTEGA_DETERMINANT returns the determinant of the ORTEGA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real U(N), V(N), vectors which define the matrix. # U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are # integers, then the matrix, inverse, eigenvalues, and eigenvectors # will be integers. # # Input, real D(N), the desired eigenvalues # # Output, real VALUE, the determinant. # import numpy as np value = np.prod ( d ) return value def ortega_determinant_test ( ): #*****************************************************************************80 # ## ORTEGA_DETERMINANT_TEST tests ORTEGA_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # from ortega import ortega from r8mat_print import r8mat_print from r8vec_uniform_ab import r8vec_uniform_ab print '' print 'ORTEGA_DETERMINANT_TEST' print ' ORTEGA_DETERMINANT computes the determinant of the ORTEGA matrix.' print '' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 v1, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) v2, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) v3, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = ortega ( n, v1, v2, v3 ) r8mat_print ( m, n, a, ' ORTEGA matrix:' ) value = ortega_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'ORTEGA_DETERMINANT_TEST' print ' Normal end of execution.' return def ortega_eigen_right ( n, u, v, d ): #*****************************************************************************80 # ## ORTEGA_EIGEN_RIGHT returns the right eigenvectors of the ORTEGA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Reference: # # James Ortega, # Generation of Test Matrices by Similarity Transformations, # Communications of the ACM, # Volume 7, 1964, pages 377-378. # # Parameters: # # Input, integer N, the order of the matrix. # 2 <= N. # # Input, real U(N), V(N), vectors which define the matrix. # U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are # integers, then the matrix, inverse, eigenvalues, and eigenvectors # will be integers. # # Input, real D(N), the desired eigenvalues. # # Output, real X(N,N), the determinant. # import numpy as np x = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == j ): x[i,j] = 1.0 + u[i] * v[j] else: x[i,j] = u[i] * v[j] return x def ortega_eigenvalues ( n, u, v, d ): #*****************************************************************************80 # ## ORTEGA_EIGENVALUES returns the eigenvalues of the ORTEGA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Reference: # # James Ortega, # Generation of Test Matrices by Similarity Transformations, # Communications of the ACM, # Volume 7, 1964, pages 377-378. # # Parameters: # # Input, integer N, the order of the matrix. # 2 <= N. # # Input, real U(N), V(N), vectors which define the matrix. # U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are # integers, then the matrix, inverse, eigenvalues, and eigenvectors # will be integers. # # Input, real D(N), the desired eigenvalues. # # Output, real LAM(N), the determinant. # import numpy as np lam = np.copy ( d ) return lam def ortega_inverse ( n, u, v, d ): #*****************************************************************************80 # ## ORTEGA_INVERSE returns the inverse of the ORTEGA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Reference: # # James Ortega, # Generation of Test Matrices by Similarity Transformations, # Communications of the ACM, # Volume 7, 1964, pages 377-378. # # Parameters: # # Input, integer N, the order of the matrix. # 2 <= N. # # Input, real U(N), V(N), vectors which define the matrix. # U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are # integers, then the matrix, inverse, eigenvalues, and eigenvectors # will be integers. # # Input, real D(N), the desired eigenvalues. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) vtu = 0.0 for i in range ( 0, n): vtu = vtu + v[i] * u[i] beta = 1.0 / ( 1.0 + vtu ) for j in range ( 0, n ): for i in range ( 0, n ): for k in range ( 0, n ): if ( i == k ): bik = 1.0 + u[i] * v[k] else: bik = + u[i] * v[k] if ( k == j ): ckj = 1.0 - beta * u[k] * v[j] else: ckj = - beta * u[k] * v[j] a[i,j] = a[i,j] + ( bik / d[k] ) * ckj return a def ortega_test ( ): #*****************************************************************************80 # ## ORTEGA_TEST tests ORTEGA. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8vec_uniform_ab import r8vec_uniform_ab print '' print 'ORTEGA_TEST' print ' ORTEGA computes the ORTEGA matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 v1, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) v2, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) v3, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = ortega ( n, v1, v2, v3 ) r8mat_print ( m, n, a, ' ORTEGA matrix:' ) print '' print 'ORTEGA_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) ortega_test ( ) timestamp ( )