#! /usr/bin/env python # def oto ( m, n ): #*****************************************************************************80 # ## OTO returns the OTO matrix. # # Example: # # N = 5 # # 2 1 . . . # 1 2 1 . . # . 1 2 1 . # . . 1 2 1 # . . . 1 2 # # Properties: # # A is banded, with bandwidth 3. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is integral: int ( A ) = A. # # A is Toeplitz: constant along diagonals. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is weakly diagonally dominant, but not strictly diagonally dominant. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( j == i - 1 ): a[i,j] = 1.0 elif ( j == i ): a[i,j] = 2.0 elif ( j == i + 1 ): a[i,j] = 1.0 else: a[i,j] = 0.0 return a def oto_condition ( n ): #*****************************************************************************80 # ## OTO_CONDITION returns the L1 condition of the OTO matrix. # # Discussion: # # I knew it had to be possible to work out this condition number! # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # if ( n == 1 ): a_norm = 2.0 elif ( n == 2 ): a_norm = 3.0 else: a_norm = 4.0 n1 = ( n + 1 ) // 2 n2 = ( n + 2 ) // 2 s = 0 i1 = n1 i2 = 0 while ( i2 < n2 ): i2 = i2 + 1 s = s + i1 * i2 while ( 1 < i1 ): i1 = i1 - 1 s = s + i1 * i2 b_norm = ( float ) ( s ) / ( float ) ( n + 1 ) value = a_norm * b_norm return value def oto_determinant ( n ): #*****************************************************************************80 # ## OTO_DETERMINANT computes the determinant of the OTO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = n + 1 return value def oto_determinant_test ( ): #*****************************************************************************80 # ## OTO_DETERMINANT_TEST tests OTO_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # from oto import oto from r8mat_print import r8mat_print print '' print 'OTO_DETERMINANT_TEST' print ' OTO_DETERMINANT computes the OTO determinant.' seed = 123456789 m = 5 n = 5 a = oto ( m, n ) r8mat_print ( n, n, a, ' OTO matrix:' ) value = oto_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'OTO_DETERMINANT_TEST' print ' Normal end of execution.' return def oto_eigen_right ( n ): #*****************************************************************************80 # ## OTO_EIGEN_RIGHT returns the right eigenvectors of the OTO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the right eigenvector matrix. # import numpy as np from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( ( i + 1 ) * ( j + 1 ) ) * np.pi / float ( n + 1 ) a[i,j] = r8_mop ( i + j ) * np.sqrt ( 2.0 / float ( n + 1 ) ) * np.sin ( angle ) return a def oto_eigenvalues ( n ): #*****************************************************************************80 # ## OTO_EIGENVALUES returns the eigenvalues of the OTO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n ): angle = float ( i + 1 ) * np.pi / float ( 2 * ( n + 1 ) ) lam[i] = 4.0 * ( np.sin ( angle ) ) ** 2 return lam def oto_inverse ( n ): #*****************************************************************************80 # ## OTO_INVERSE returns the inverse of the OTO matrix. # # Formula: # # if ( I <= J ) # A(I,J) = (-1)^(I+J) * I * (N-J+1) / (N+1) # else # A(I,J) = (-1)^(I+J) * J * (N-I+1) / (N+1) # # Example: # # N = 4 # # 4 -3 2 -1 # (1/5) * -3 6 -4 2 # 2 -4 6 -3 # -1 2 -3 4 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = r8_mop ( i + j ) * float ( ( i + 1 ) * ( n - j ) ) / float ( n + 1 ) else: a[i,j] = r8_mop ( i + j ) * float ( ( j + 1 ) * ( n - i ) ) / float ( n + 1 ) return a def oto_llt ( n ): #*****************************************************************************80 # ## OTO_LLT returns the Cholesky factor of the OTO matrix. # # Example: # # N = 5 # # 1.4142 0 0 0 0 # 0.7071 1.2247 0 0 0 # 0 0.8165 1.1547 0 0 # 0 0 0.8660 1.1180 0 # 0 0 0 0.8944 1.0954 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = np.sqrt ( float ( i + 2 ) / float ( i + 1 ) ) for i in range ( 1, n ): a[i,i-1] = np.sqrt ( float ( i ) / float ( i + 1 ) ) return a def oto_plu ( n ): #*****************************************************************************80 # ## OTO_PLU returns the PLU factors of the OTO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): p[j,j] = 1.0 l = np.zeros ( ( n, n ) ) for j in range ( 0, n ): l[j,j] = 1.0 for j in range ( 0, n - 1 ): l[j+1,j] = float ( j + 1 ) / float ( j + 2 ) u = np.zeros ( ( n, n ) ) for j in range ( 0, n ): u[j,j] = float ( j + 2 ) / float ( j + 1 ) for j in range ( 1, n ): u[j-1,j] = 1.0 return p, l, u def oto_test ( ): #*****************************************************************************80 # ## OTO_TEST tests OTO. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'OTO_TEST' print ' OTO computes the OTO matrix.' m = 5 n = m a = oto ( m, n ) r8mat_print ( m, n, a, ' OTO matrix:' ) print '' print 'OTO_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) oto_test ( ) oto_determinant_test ( ) timestamp ( )