#! /usr/bin/env python # def parter ( m, n ): #*****************************************************************************80 # ## PARTER returns the PARTER matrix. # # Formula: # # A(I,J) = 1 / ( i - j + 0.5 ) # # Example: # # N = 5 # # 2 -2 -2/3 -2/5 -2/7 # 2/3 2 -2 -2/3 -2/5 # 2/5 2/3 2 -2 -2/3 # 2/7 2/5 2/3 2 -2 # 2/9 2/7 2/5 2/3 2 # # Properties: # # The diagonal entries are all 2, the first superdiagonals all -2. # # A is Toeplitz: constant along diagonals. # # A is generally not symmetric: A' ~= A. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is a special case of the Cauchy matrix. # # Most of the singular values are very close to Pi. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # Seymour Parter, # On the distribution of the singular values of Toeplitz matrices, # Linear Algebra and Applications, # Volume 80, August 1986, pages 115-130. # # Evgeny Tyrtyshnikov, # Cauchy-Toeplitz matrices and some applications, # Linear Algebra and Applications, # Volume 149, 15 April 1991, pages 1-18. # # Parameters: # # Input, integer M, N, the order of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): a[i,j] = 1.0 / ( float ( i - j ) + 0.5 ) return a def parter_determinant ( n ): #*****************************************************************************80 # ## PARTER_DETERMINANT returns the determinant of the PARTER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # top = 1.0 for i in range ( 0, n ): for j in range ( i + 1, n ): top = top * float ( j - i ) * float ( i - j ) bottom = 1.0 for i in range ( 0, n ): for j in range ( 0, n ): bottom = bottom * ( float ( i - j ) + 0.5 ) value = top / bottom; return value def parter_determinant_test ( ): #*****************************************************************************80 # ## PARTER_DETERMINANT_TEST tests PARTER_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # from parter import parter from r8mat_print import r8mat_print print '' print 'PARTER_DETERMINANT_TEST' print ' PARTER_DETERMINANT computes the determinant of the PARTER matrix.' print '' m = 4 n = m a = parter ( m, n ) r8mat_print ( m, n, a, ' PARTER matrix:' ) value = parter_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'PARTER_DETERMINANT_TEST' print ' Normal end of execution.' return def parter_inverse ( n ): #*****************************************************************************80 # ## PARTER_INVERSE returns the inverse of the PARTER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n): for j in range ( 0, n ): top = 1.0; bot1 = 1.0; bot2 = 1.0; for k in range ( 0, n ): top = top * ( 0.5 + float ( j - k ) ) * ( 0.5 + float ( k - i ) ) if ( k != j ): bot1 = bot1 * float ( j - k ) if ( k != i ): bot2 = bot2 * float ( k - i ) a[i,j] = top / ( ( 0.5 + float ( j - i ) ) * bot1 * bot2 ) return a def parter_test ( ): #*****************************************************************************80 # ## PARTER_TEST tests PARTER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'PARTER_TEST' print ' PARTER computes the PARTER matrix.' m = 4 n = m a = parter ( m, n ) r8mat_print ( m, n, a, ' PARTER matrix:' ) print '' print 'PARTER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) parter_test ( ) timestamp ( )