#! /usr/bin/env python # def pascal1 ( n ): #*****************************************************************************80 # ## PASCAL1 returns the PASCAL1 matrix. # # Formula: # # if ( J = 1 ) # A(I,J) = 1 # elseif ( I = 0 ) # A(1,J) = 0 # else # A(I,J) = A(I-1,J) + A(I-1,J-1) # # Example: # # N = 5 # # 1 0 0 0 0 # 1 1 0 0 0 # 1 2 1 0 0 # 1 3 3 1 0 # 1 4 6 4 1 # # Properties: # # A is a "chunk" of the Pascal binomial combinatorial triangle. # # A is generally not symmetric: A' /= A. # # A is nonsingular. # # A is lower triangular. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # (0, 0, ..., 0, 1) is an eigenvector. # # The inverse of A is the same as A, except that entries in "odd" # positions have changed sign: # # B(I,J) = (-1)^(I+J) * A(I,J) # # The product A*A' is a Pascal matrix # of the sort created by subroutine PASCAL2. # # Let the matrix C have the same entries as A, except that # the even columns are negated. Then Inverse(C) = C, and # C' * C = the Pascal matrix created by PASCAL2. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.15, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 43, # LC: QA263.G68. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = 1.0 elif ( i == 0 ): a[i,j] = 0.0 else: a[i,j] = a[i-1,j-1] + a[i-1,j] return a def pascal1_condition ( n ): #*****************************************************************************80 # ## PASCAL1_CONDITION returns the L1 condition of the PASCAL1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # from r8_choose import r8_choose nhalf = ( ( n + 1 ) // 2 ) a_norm = r8_choose ( n, nhalf ) b_norm = r8_choose ( n, nhalf ) value = a_norm * b_norm return value def pascal1_determinant ( n ): #*****************************************************************************80 # ## PASCAL1_DETERMINANT computes the determinant of the PASCAL1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def pascal1_determinant_test ( ): #*****************************************************************************80 # ## PASCAL1_DETERMINANT_TEST tests PASCAL1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from pascal1 import pascal1 from r8mat_print import r8mat_print print '' print 'PASCAL1_DETERMINANT_TEST' print ' PASCAL1_DETERMINANT computes the PASCAL1 determinant.' m = 5 n = m a = pascal1 ( n ) r8mat_print ( m, n, a, ' PASCAL1 matrix:' ) value = pascal1_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'PASCAL1_DETERMINANT_TEST' print ' Normal end of execution.' return def pascal1_inverse ( n ): #*****************************************************************************80 # ## PASCAL1_INVERSE returns the inverse of the PASCAL1 matrix. # # Formula: # # if ( J = 1 ) # A(I,J) = (-1)^(I+J) # elseif ( I = 1 ) # A(I,J) = 0 # else # A(I,J) = A(I-1,J) - A(I,J-1) # # Example: # # N = 5 # # 1 0 0 0 0 # -1 1 0 0 0 # 1 -2 1 0 0 # -1 3 -3 1 0 # 1 -4 6 -4 1 # # Properties: # # A is nonsingular. # # A is lower triangular. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # (0, 0, ..., 0, 1) is an eigenvector. # # The inverse of A is the same as A, except that entries in "odd" # positions have changed sign: # # B(I,J) = (-1)^(I+J) * A(I,J) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = r8_mop ( i + j ) elif ( 0 < i ): a[i,j] = a[i-1,j-1] - a[i-1,j] return a def pascal1_test ( ): #*****************************************************************************80 # ## PASCAL1_TEST tests PASCAL1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'PASCAL1_TEST' print ' PASCAL1 computes the PASCAL1 matrix.' m = 5 n = m a = pascal1 ( n ) r8mat_print ( m, n, a, ' PASCAL1 matrix:' ) print '' print 'PASCAL1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pascal1_test ( ) timestamp ( )