#! /usr/bin/env python # def pascal2 ( n ): #*****************************************************************************80 # ## PASCAL2 returns the PASCAL2 matrix. # # Formula: # # If ( I = 1 or J = 1 ) # A(I,J) = 1 # else # A(I,J) = A(I-1,J) + A(I,J-1) # # Example: # # N = 5 # # 1 1 1 1 1 # 1 2 3 4 5 # 1 3 6 10 15 # 1 4 10 20 35 # 1 5 15 35 70 # # Properties: # # A is a "chunk" of the Pascal binomial combinatorial triangle. # # A is positive definite. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is nonsingular. # # det ( A ) = 1. # # A is unimodular. # # Eigenvalues of A occur in reciprocal pairs. # # The condition number of A is approximately 16^N / ( N*PI ). # # The elements of the inverse of A are integers. # # A(I,J) = (I+J-2)% / ( (I-1)! * (J-1)! ) # # The Cholesky factor of A is a lower triangular matrix R, # such that A = R * R'. The matrix R is a Pascal # matrix of the type generated by subroutine PASCAL. In other # words, PASCAL2 = PASCAL * PASCAL'. # # If the (N,N) entry of A is decreased by 1, the matrix is singular. # # Gregory and Karney consider a generalization of this matrix as # their test matrix 3.7, in which every element is multiplied by a # nonzero constant K. They point out that if K is the reciprocal of # an integer, then the inverse matrix has all integer entries. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Brawer, Magnus Pirovino, # The linear algebra of the Pascal matrix, # Linear Algebra and Applications, # Volume 174, 1992, pages 13-23. # # Robert Gregory, David Karney, # Example 3.7, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 32, # LC: QA263.G68. # # Nicholas Higham, # Accuracy and Stability of Numerical Algorithms, # Society for Industrial and Applied Mathematics, # Philadelphia, PA, USA, 1996; section 26.4. # # Sam Karlin, # Total Positivity, Volume 1, # Stanford University Press, 1968. # # Morris Newman, John Todd, # The evaluation of matrix inversion programs, # Journal of the Society for Industrial and Applied Mathematics, # Volume 6, Number 4, pages 466-476, 1958. # # Heinz Rutishauser, # On test matrices, # Programmation en Mathematiques Numeriques, # Centre National de la Recherche Scientifique, # 1966, pages 349-365. # # John Todd, # Basic Numerical Mathematics, Vol. 2: Numerical Algebra, # Academic Press, 1977, page 172. # # HW Turnbull, # The Theory of Determinants, Matrices, and Invariants, # Blackie, 1929. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 ): a[i,j] = 1.0 elif ( j == 0 ): a[i,j] = 1.0 else: a[i,j] = a[i,j-1] + a[i-1,j] return a def pascal2_determinant ( n ): #*****************************************************************************80 # ## PASCAL2_DETERMINANT computes the determinant of the PASCAL2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def pascal2_determinant_test ( ): #*****************************************************************************80 # ## PASCAL2_DETERMINANT_TEST tests PASCAL2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from pascal2 import pascal2 from r8mat_print import r8mat_print print '' print 'PASCAL2_DETERMINANT_TEST' print ' PASCAL2_DETERMINANT computes the PASCAL2 determinant.' m = 5 n = m a = pascal1 ( n ) r8mat_print ( m, n, a, ' PASCAL2 matrix:' ) value = pascal2_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'PASCAL2_DETERMINANT_TEST' print ' Normal end of execution.' return def pascal2_inverse ( n ): #*****************************************************************************80 # ## PASCAL2_INVERSE returns the inverse of the PASCAL2 matrix. # # Formula: # # A(I,J) = sum ( max(I,J) <= K <= N ) # (-1)^(J+I) * COMB(K-1,I-1) * COMB(K-1,J-1) # # Example: # # N = 5 # # 5 -10 10 -5 1 # -10 30 -35 19 -4 # 10 -35 46 -27 6 # -5 19 -27 17 -4 # 1 -4 6 -4 1 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # The first row sums to 1, the others to 0. # # The first column sums to 1, the others to 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_choose import r8_choose from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): klo = max ( i + 1, j + 1 ) for k in range ( klo, n + 1 ): a[i,j] = a[i,j] + r8_mop ( i + j ) * r8_choose ( k - 1, i ) \ * r8_choose ( k - 1, j ) return a def pascal2_llt ( n ): #*****************************************************************************80 # ## PASCAL2_LLT returns the Cholesky factor of the PASCAL2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # from pascal1 import pascal1 a = pascal1 ( n ) return a def pascal2_plu ( n ): #*****************************************************************************80 # ## PASCAL2_PLU returns the PLU factors of the PASCAL2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np from pascal1 import pascal1 p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): p[j,j] = 1.0 l = pascal1 ( n ) u = np.transpose ( l ) return p, l, u def pascal2_test ( ): #*****************************************************************************80 # ## PASCAL2_TEST tests PASCAL2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'PASCAL2_TEST' print ' PASCAL2 computes the PASCAL2 matrix.' m = 5 n = m a = pascal2 ( n ) r8mat_print ( m, n, a, ' PASCAL2 matrix:' ) print '' print 'PASCAL2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pascal2_test ( ) timestamp ( )