#! /usr/bin/env python # def pascal3 ( n, alpha ): #*****************************************************************************80 # ## PASCAL3 returns the PASCAL3 matrix. # # Formula: # # if ( J = 1 ) # A(I,J) = 1 # elseif ( I = 0 ) # A(1,J) = 0 # else # A(I,J) = ALPHA * A(I-1,J) + A(I-1,J-1) ) # # Example: # # N = 5, ALPHA = 2 # # 1 0 0 0 0 # 2 1 0 0 0 # 4 4 1 0 0 # 8 12 6 1 0 # 16 32 24 8 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A[0] is the identity matrix. # # A[1] is the usual (lower triangular) Pascal matrix. # # A is nonsingular. # # A is lower triangular. # # If ALPHA is integral, then A is integral. # If A is integral, then det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # (0, 0, ..., 0, 1) is an eigenvector. # # The inverse of A[ALPHA] is A[-ALPHA]. # # A[ALPHA] * A[BETA] = A[ALPHA*BETA]. # # A[1/2] is the "square root" of A[1], and so on. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Gregory Call, Daniel Velleman, # Pascal's Matrices, # American Mathematical Monthly, # Volume 100, Number 4, April 1993, pages 372-376. # # Parameters: # # Input, integer N, the order of A. # # Input, real ALPHA, the parameter. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 ): if ( j == 0 ): a[i,j] = 1.0 else: a[i,j] = 0.0 elif ( j == 0 ): a[i,j] = alpha * a[i-1,j] else: a[i,j] = a[i-1,j-1] + alpha * a[i-1,j] return a def pascal3_condition ( n, alpha ): #*****************************************************************************80 # ## PASCAL3_CONDITION returns the L1 condition of the PASCAL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, the scalar defining A. # # Output, real VALUE, the L1 condition. # from r8mat_norm_l1 import r8mat_norm_l1 a = pascal3 ( n, alpha ) a_norm = r8mat_norm_l1 ( n, n, a ); b_norm = a_norm; value = a_norm * b_norm return value def pascal3_determinant ( n, alpha ): #*****************************************************************************80 # ## PASCAL3_DETERMINANT returns the determinant of the PASCAL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, the scalar defining A. # # Output, real VALUE, the determinant. # value = 1.0 return value def pascal3_determinant_test ( ): #*****************************************************************************80 # ## PASCAL3_DETERMINANT_TEST tests PASCAL3_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from pascal3 import pascal3 from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'PASCAL3_DETERMINANT_TEST' print ' PASCAL3_DETERMINANT computes the determinant of the PASCAL3 matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = pascal3 ( n, alpha ) r8mat_print ( m, n, a, ' PASCAL3 matrix:' ) value = pascal3_determinant ( n, alpha ) print '' print ' Value = %g' % ( value ) print '' print 'PASCAL3_DETERMINANT_TEST' print ' Normal end of execution.' return def pascal3_inverse ( n, alpha ): #*****************************************************************************80 # ## PASCAL3_INVERSE returns the inverse of the PASCAL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real ALPHA, the parameter. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 ): if ( j == 0 ): a[i,j] = 1.0 elif ( j == 0 ): a[i,j] = - alpha * a[i-1,j] else: a[i,j] = a[i-1,j-1] - alpha * a[i-1,j] return a def pascal3_test ( ): #*****************************************************************************80 # ## PASCAL3_TEST tests PASCAL3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'PASCAL3_TEST' print ' PASCAL3 computes the PASCAL3 matrix.' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = pascal3 ( n, alpha ) r8mat_print ( m, n, a, ' PASCAL3 matrix:' ) print '' print 'PASCAL3_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pascal3_test ( ) timestamp ( )