#! /usr/bin/env python # def pds_random ( n, key ): #*****************************************************************************80 # ## PDS_RANDOM returns a random positive definite symmetric matrix. # # Discussion: # # The matrix returned will have eigenvalues in the range [0,1]. # # Properties: # # A is symmetric: A' = A. # # A is positive definite: 0 < x'*A*x for nonzero x. # # The eigenvalues of A will be real. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, integer KEY, a positive value that selects the data. # # Output, real A(N,N), the matrix. # import numpy as np from orth_random import orth_random from r8vec_uniform_01 import r8vec_uniform_01 # # Get a random set of eigenvalues. # seed = key lam, seed = r8vec_uniform_01 ( n, seed ) # # Get a random orthogonal matrix Q. # q = orth_random ( n, key ) # # Set A = Q * Lambda * Q'. # a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): for k in range ( 0, n ): a[i,j] = a[i,j] + q[i,k] * lam[k] * q[j,k] return a def pds_random_determinant ( n, key ): #*****************************************************************************80 # ## PDS_RANDOM_DETERMINANT returns the determinant of the PDS_RANDOM matrix. # # Discussion: # # This routine will only work properly if the SAME value of SEED # is input that was input to PDS_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, integer KEY, a positive value that selects the data. # # Output, real VALUE, the determinant. # import numpy as np from r8vec_uniform_01 import r8vec_uniform_01 seed = key lam, seed = r8vec_uniform_01 ( n, seed ) value = np.prod ( lam ) return value def pds_random_eigen_right ( n, key ): #*****************************************************************************80 # ## PDS_RANDOM_EIGEN_RIGHT returns the right eigenvectors of the PDS_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, integer KEY, a positive value that selects the data. # # Output, real Q(N,N), the matrix. # from orth_random import orth_random from r8vec_uniform_01 import r8vec_uniform_01 # # Get a random set of eigenvalues. # seed = key lam, seed = r8vec_uniform_01 ( n, seed ) # # Get a random orthogonal matrix Q. # q = orth_random ( n, key ) return q def pds_random_eigenvalues ( n, key ): #*****************************************************************************80 # ## PDS_RANDOM_EIGENVALUES returns the eigenvalues of the PDS_RANDOM matrix. # # Discussion: # # This routine will only work properly if the SAME value of SEED # is input that was input to PDS_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, integer KEY, a positive value that selects the data. # # Output, real LAM(N), the eigenvalues. # from r8vec_uniform_01 import r8vec_uniform_01 seed = key lam, seed = r8vec_uniform_01 ( n, seed ) return lam def pds_random_inverse ( n, key ): #*****************************************************************************80 # ## PDS_RANDOM_INVERSE returns the inverse of the PDS_RANDOM matrix. # # Discussion: # # The matrix returned will have eigenvalues in the range [0,1]. # # Properties: # # A is symmetric: A' = A. # # A is positive definite: 0 < x'*A*x for nonzero x. # # The eigenvalues of A will be real. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, integer KEY, a positive value that selects the data. # # Output, real A(N,N), the matrix. # import numpy as np from orth_random import orth_random from r8vec_uniform_01 import r8vec_uniform_01 a = np.zeros ( ( n, n ) ) # # Get a random set of eigenvalues. # seed = key lam, seed = r8vec_uniform_01 ( n, seed ) # # Get a random orthogonal matrix Q. # q = orth_random ( n, key ) # # Set A = Q * Lambda * Q'. # for i in range ( 0, n ): for j in range ( 0, n ): for k in range ( 0, n ): a[i,j] = a[i,j] + q[i,k] * ( 1.0 / lam[k] ) * q[j,k] return a def pds_random_test ( ): #*****************************************************************************80 # ## PDS_RANDOM_TEST tests PDS_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'PDS_RANDOM_TEST' print ' PDS_RANDOM computes the PDS_RANDOM matrix.' n = 5 key = 123456789 a = pds_random ( n, key ) r8mat_print ( n, n, a, ' PDS_RANDOM matrix:' ) print '' print 'PDS_RANDOM_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pds_random_test ( ) timestamp ( )