#! /usr/bin/env python # def pei ( alpha, n ): #*****************************************************************************80 # ## PEI returns the PEI matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1.0 + ALPHA # else # A(I,J) = 1.0 # # Example: # # ALPHA = 2, N = 5 # # 3 1 1 1 1 # 1 3 1 1 1 # 1 1 3 1 1 # 1 1 1 3 1 # 1 1 1 1 3 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is positive definite for 0 < ALPHA. # # A is Toeplitz: constant along diagonals. # # A is a circulant matrix: each row is shifted once to get the next row. # # A is singular if and only if ALPHA = 0 or ALPHA = -N. # # A becomes more ill-conditioned as ALPHA approaches 0. # # The condition number under the spectral norm is # abs ( ( ALPHA + N ) / ALPHA ) # # The eigenvalues of A are # # LAMBDA(1:N-1) = ALPHA # LAMBDA(N) = ALPHA + N # # A has constant row sum of ALPHA + N. # # Because it has a constant row sum of ALPHA + N, # A has an eigenvalue of ALPHA + N, and # a (right) eigenvector of ( 1, 1, 1, ..., 1 ). # # A has constant column sum of ALPHA + N. # # Because it has a constant column sum of ALPHA + N, # A has an eigenvalue of ALPHA + N, and # a (left) eigenvector of ( 1, 1, 1, ..., 1 ). # # The eigenvectors are: # # V1 = 1 / sqrt ( N ) * ( 1, 1, 1, ... , 1 ) # VR = 1 / sqrt ( R * (R-1) ) * ( 1, 1, 1, ... 1, -R+1, 0, 0, 0, ... 0 ) # # where the "-R+1" occurs at index R. # # det ( A ) = ALPHA^(N-1) * ( N + ALPHA ). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Morris Newman, John Todd, # Example A3, # The evaluation of matrix inversion programs, # Journal of the Society for Industrial and Applied Mathematics, # Volume 6, Number 4, pages 466-476, 1958. # # ML Pei, # A test matrix for inversion procedures, # Communications of the ACM, # Volume 5, 1962, page 508. # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Input, real ALPHA, the scalar that defines the Pei matrix. A # typical value of ALPHA is 1.0. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 + alpha else: a[i,j] = 1.0 return a def pei_condition ( alpha, n ): #*****************************************************************************80 # ## PEI_CONDITION returns the L1 condition of the PEI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # # Input, integer N, the order of A. # # Output, real VALUE, the L1 condition. # a_norm = abs ( alpha + 1.0 ) + n - 1 b_norm = ( abs ( alpha + n - 1.0 ) + n - 1.0 ) \ / abs ( alpha * ( alpha + n ) ) value = a_norm * b_norm return value def pei_condition_test ( ): #*****************************************************************************80 # ## PEI_CONDITION_TEST tests PEI_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from pei import pei from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'PEI_CONDITION_TEST' print ' PEI_CONDITION computes the condition of the PEI matrix.' print '' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = pei ( alpha, n ) r8mat_print ( m, n, a, ' PEI matrix:' ) value = pei_condition ( alpha ) print '' print ' Value = %g' % ( value ) print '' print 'PEI_CONDITION_TEST' print ' Normal end of execution.' return def pei_determinant ( alpha, n ): #*****************************************************************************80 # ## PEI_DETERMINANT returns the determinant of the PEI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # # Input, integer N, the order of A. # # Output, real VALUE, the determinant. # value = alpha ** ( n - 1 ) * ( alpha + n ) return value def pei_determinant_test ( ): #*****************************************************************************80 # ## PEI_DETERMINANT_TEST tests PEI_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from pei import pei from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'PEI_DETERMINANT_TEST' print ' PEI_DETERMINANT computes the determinant of the PEI matrix.' print '' m = 5 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = pei ( alpha, n ) r8mat_print ( m, n, a, ' PEI matrix:' ) value = pei_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'PEI_DETERMINANT_TEST' print ' Normal end of execution.' return def pei_eigen_right ( alpha, n ): #*****************************************************************************80 # ## PEI_EIGEN_RIGHT returns the right eigenvectors of the PEI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar that defines A. # # Input, integer N, the order of the matrix. # # Output, real X(N,N), the right eigenvectors. # import numpy as np x = np.zeros ( ( n, n ) ) for j in range ( 0, n - 1 ): x[ 0,j] = +1.0 x[j+1,j] = -1.0 for i in range ( 0, n ): x[i,n-1] = 1.0 return x def pei_eigenvalues ( alpha, n ): #*****************************************************************************80 # ## PEI_EIGENVALUES returns the eigenvalues of the Pei matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar that defines the Pei matrix. A # typical value of ALPHA is 1.0. # # Input, integer N, the order of A. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n - 1 ): lam[i] = alpha lam[n-1] = alpha + float ( n ) return lam def pei_inverse ( alpha, n ): #*****************************************************************************80 # ## PEI_INVERSE returns the inverse of the Pei matrix. # # Formula: # # if ( I = J ) # A(I,J) = (ALPHA+N-1) / ( (ALPHA+1)*(ALPHA+N-1)-(N-1) ) # else # A(I,J) = -1 / ( (ALPHA+1)*(ALPHA+N-1)-(N-1) ) # # Example: # # ALPHA = 2, N = 5 # # 6 -1 -1 -1 -1 # -1 6 -1 -1 -1 # 1/14 * -1 -1 6 -1 -1 # -1 -1 -1 6 -1 # -1 -1 -1 -1 6 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is a "combinatorial" matrix. See routine COMBIN. # # A is Toeplitz: constant along diagonals. # # A is a circulant matrix: each row is shifted once to get the next row. # # A has constant row sum. # # Because it has a constant row sum of 1 / ( ALPHA + N ), # A has an eigenvalue of 1 / ( ALPHA + N ), and # a (right) eigenvector of ( 1, 1, 1, ..., 1 ). # # A has constant column sum. # # Because it has constant column sum of 1 / ( ALPHA + N ), # A has an eigenvalue of 1 / ( ALPHA + N ), and # a (left) eigenvector of ( 1, 1, 1, ..., 1 ). # # The eigenvalues of A are # LAMBDA(1:N-1) = 1 / ALPHA # LAMBDA(N) = 1 / ( ALPHA + N ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Reference: # # ML Pei, # A test matrix for inversion procedures, # Communications of the ACM, # Volume 5, 1962, page 508. # # Parameters: # # Input, real ALPHA, the scalar that defines the inverse # of the Pei matrix. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( n, n ) ) bottom = ( alpha + 1.0 ) * ( alpha + n - 1.0 ) - n + 1.0 if ( bottom == 0.0 ): print '' print 'PEI_INVERSE - Fatal error!' print ' The matrix is not invertible.' print ' (ALPHA+1)*(ALPHA+N-1)-N+1 is zero.' exit ( 'PEI_INVERSE - Fatal error!' ) alpha1 = ( alpha + ( n ) - 1.0 ) / bottom beta1 = - 1.0 / bottom for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = alpha1 else: a[i,j] = beta1 return a def pei_test ( ): #*****************************************************************************80 # ## PEI_TEST tests PEI. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'PEI_TEST' print ' PEI computes the PEI matrix.' m = 5 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = pei ( alpha, n ) r8mat_print ( m, n, a, ' PEI matrix:' ) print '' print 'PEI_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pei_test ( ) timestamp ( )