#! /usr/bin/env python # def permutation_random ( n, key ): #*****************************************************************************80 # ## PERMUTATION_RANDOM returns the PERMUTATION_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Reference: # # Albert Nijenhuis, Herbert Wilf, # Combinatorial Algorithms, # Academic Press, 1978, second edition, # ISBN 0-12-519260-6. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, integer KEY, a positive value that selects the data. # # Output, real A(N,N), the matrix. # from i4_uniform_ab import i4_uniform_ab from identity import identity a = identity ( n, n ) seed = key for i in range ( 0, n ): i4_lo = i i4_hi = n - 1 i2, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) if ( i2 != i ): for j in range ( 0, n ): t = a[i,j] a[i,j] = a[i2,j] a[i2,j] = t return a def permutation_random_determinant ( n, key ): #*****************************************************************************80 # ## PERMUTATION_RANDOM_DETERMINANT: determinant of PERMUTATION_RANDOM matrix. # # Discussion: # # This routine will only work properly if it is given as input the # same value of SEED that was given to PERMUTATION_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, integer KEY, a positive value that selects the data. # # Output, real VALUE, the determinant. # from sys import exit a = permutation_random ( n, key ) value = 1.0 for i in range ( 0, n ): found = False for i2 in range ( i, n ): if ( a[i2,i] == 1.0 ): found = True if ( i2 != i ): for j in range ( 0, n ): t = a[i2,j] a[i2,j] = a[i,j] a[i,j] = t value = - value if ( not found ): print '' print 'PERMUTATION_RANDOM_DETERMINANT - Fatal error!' print ' Permutation matrix is illegal.' exit ( 'PERMUTATION_RANDOM_DETERMINANT - Fatal error!' ) return value def permutation_random_inverse ( n, key ): #*****************************************************************************80 # ## PERMUTATION_RANDOM_INVERSE: inverse of PERMUTATION_RANDOM matrix. # # Discussion: # # This routine will only work properly if it is given as input the # same value of SEED that was given to PERMUTATION_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, integer KEY, a positive value that selects the data. # # Output, real A(N,N), the inverse matrix. # import numpy as np a = permutation_random ( n, key ) a = np.transpose ( a ) return a def permutation_random_test ( ): #*****************************************************************************80 # ## PERMUTATION_RANDOM_TEST tests PERMUTATION_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'PERMUTATION_RANDOM_TEST' print ' PERMUTATION_RANDOM computes the PERMUTATION_RANDOM matrix.' n = 5 key = 123456789 a = permutation_random ( n, key ) r8mat_print ( n, n, a, ' PERMUTATION_RANDOM matrix:' ) print '' print 'PERMUTATION_RANDOM_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) permutation_random_test ( ) timestamp ( )