#!/usr/bin/env python def r8_rise ( x, n ): #*****************************************************************************80 # ## R8_RISE computes the rising factorial function [X]^N. # # Discussion: # # [X]^N = X * ( X + 1 ) * ( X + 2 ) * ... * ( X + N - 1 ). # # Note that the number of ways of arranging N objects in M ordered # boxes is [M]^N. (Here, the ordering of the objects in each box matters). # Thus, 2 objects in 2 boxes have the following 6 possible arrangements: # # -|12, 1|2, 12|-, -|21, 2|1, 21|-. # # Moreover, the number of non-decreasing maps from a set of # N to a set of M ordered elements is [M]^N / N!. Thus the set of # nondecreasing maps from (1,2,3) to (a,b,c,d) is the 20 elements: # # aaa, abb, acc, add, aab, abc, acd, aac, abd, aad # bbb, bcc, bdd, bbc, bcd, bbd, ccc, cdd, ccd, ddd. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 July 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the argument of the rising factorial function. # # Input, integer N, the order of the rising factorial function. # If N = 0, RISE = 1, if N = 1, RISE = X. Note that if N is # negative, a "falling" factorial will be computed. # # Output, real VALUE, the value of the rising factorial function. # value = 1.0 arg = x if ( 0 < n ): for i in range ( 0, n ): value = value * arg arg = arg + 1.0 elif ( n < 0 ): for i in range ( n, 0 ): value = value * arg arg = arg - 1.0 return value def r8_rise_values ( n_data ): #*****************************************************************************80 # ## R8_RISE_VALUES returns values of the rising factorial function. # # Discussion: # # The rising factorial function is sometimes symbolized by (m)_n. # # The definition is # # (m)_n = (m-1+n)! / (m-1)! # = ( m ) * ( m + 1 ) * ( m + 2 ) \ * ( m - 1 + n ) # = Gamma ( m + n ) / Gamma ( m ) # # We assume 0 <= N <= M. # # In Mathematica, the function can be evaluated by: # # Pochhammer[m,n] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, integer N, the arguments of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 15 f_vec = np.array ( [ 1680.000000000000, \ 1962.597656250000, \ 2279.062500000000, \ 2631.972656250000, \ 3024.000000000000, \ 1.000000000000000, \ 7.500000000000000, \ 63.75000000000000, \ 605.6250000000000, \ 6359.062500000000, \ 73129.21875000000, \ 914115.2343750000, \ 1.234055566406250E+07, \ 1.789380571289063E+08, \ 2.773539885498047E+09 ] ) n_vec = np.array ( [ 4, \ 4, \ 4, \ 4, \ 4, \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9 ] ) x_vec = np.array ( [ 5.00, \ 5.25, \ 5.50, \ 5.75, \ 6.00, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50 ] ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 n = 0 f = 0.0 else: x = x_vec[n_data] n = n_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, n, f def r8_rise_test ( ): #*****************************************************************************80 # ## R8_RISE_TEST tests R8_RISE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # print '' print 'R8_RISE_TEST' print ' R8_RISE evaluates the rising factorial Rise(X,N).' print '' print ' X N Exact', print ' Computed' print '' n_data = 0 while ( True ): n_data, x, n, f1 = r8_rise_values ( n_data ) if ( n_data == 0 ): break f2 = r8_rise ( x, n ) print ' %8.4g %4d %24.16g %24.16g' % ( x, n, f1, f2 ) print '' print 'R8_RISE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_rise_test ( ) timestamp ( )