#!/usr/bin/env python def r8mat_is_eigen_left ( n, k, a, x, lam ): #*****************************************************************************80 # ## R8MAT_IS_EIGEN_LEFT determines the error in a left eigensystem. # # Discussion: # # An R8MAT is a matrix of real values. # # This routine computes the Frobenius norm of # # X * A - LAMBDA * X # # where # # A is an N by N matrix, # X is an K by N matrix (each of K columns is an eigenvector) # LAMBDA is a K by K diagonal matrix of eigenvalues. # # This routine assumes that A, X and LAMBDA are all real. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, integer K, the number of eigenvectors. # K is usually 1 or N. # # Input, real A(N,N), the matrix. # # Input, real X(K,N), the K eigenvectors. # # Input, real LAM(K), the K eigenvalues. # # Output, real VALUE, the Frobenius norm of X * A - LAM * X. # from r8mat_mm import r8mat_mm from r8mat_norm_fro import r8mat_norm_fro c = r8mat_mm ( k, n, n, x, a ) for i in range ( 0, k ): for j in range ( 0, n ): c[i,j] = c[i,j] - lam[i] * x[i,j] value = r8mat_norm_fro ( k, n, c ) return value def r8mat_is_eigen_left_test ( ): #*****************************************************************************80 # ## R8MAT_IS_EIGEN_LEFT_TEST tests R8MAT_IS_EIGEN_LEFT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print from r8vec_print import r8vec_print # # This is the CARRY ( 4.0, 4 ) matrix. # m = 4 n = m a = np.array ( [ \ [ 0.13671875, 0.60546875, 0.25390625, 0.00390625 ], \ [ 0.05859375, 0.52734375, 0.39453125, 0.01953125 ], \ [ 0.01953125, 0.39453125, 0.52734375, 0.05859375 ], \ [ 0.00390625, 0.25390625, 0.60546875, 0.13671875 ] ] ) k = 4 x = np.array ( [ \ [ 1.0, 1.0, 1.0, 1.0 ], \ [ 11.0, 3.0, -1.0, -3.0 ], \ [ 11.0, -3.0, -1.0, 3.0 ], \ [ 1.0, -1.0, 1.0, -1.0 ] ] ) lam = np.array ( [ \ 1.000000000000000, \ 0.250000000000000, \ 0.062500000000000, \ 0.015625000000000 ] ) print '' print 'R8MAT_IS_EIGEN_LEFT_TEST:' print ' R8MAT_IS_EIGEN_LEFT tests the error in the left eigensystem' print ' A\' * X - X * LAMBDA = 0' r8mat_print ( n, n, a, ' Matrix A:' ) r8mat_print ( n, k, x, ' Eigenmatrix X:' ) r8vec_print ( n, lam, ' Eigenvalues LAM:' ) value = r8mat_is_eigen_left ( n, k, a, x, lam ) print '' print ' Frobenius norm of A\'*X-X*LAMBDA is %g' % ( value ) print '' print 'R8MAT_IS_EIGEN_LEFT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8mat_is_eigen_left_test ( ) timestamp ( )