#!/usr/bin/env python def r8mat_is_null_left ( m, n, a, x ): #*****************************************************************************80 # ## R8MAT_IS_NULL_LEFT determines if x is a left null vector of matrix A. # # Discussion: # # The nonzero M vector x is a left null vector of the MxN matrix A if # # x'*A = A'*x = 0 # # If A is a square matrix, then this implies that A is singular. # # If A is a square matrix, this implies that 0 is an eigenvalue of A, # and that x is an associated eigenvector. # # This routine returns 0 if x is exactly a left null vector of A. # # It returns a "huge" value if x is the zero vector. # # Otherwise, it returns the L2 norm of A' * x divided by the L2 norm of x: # # ERROR_L2 = NORM_L2 ( A' * x ) / NORM_L2 ( x ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the row and column dimensions of # the matrix. M and N must be positive. # # Input, real A(M,N), the matrix. # # Input, real X(M), the vector. # # Output, real VALUE, the result. # 0.0 indicates that X is exactly a left null vector. # A "huge" value indicates that ||x|| = 0; # Otherwise, the value returned is a relative error ||A'*x||/||x||. # from r8mat_mtv import r8mat_mtv from r8vec_norm_l2 import r8vec_norm_l2 # # X_NORM # x_norm = r8vec_norm_l2 ( m, x ) # # ATX = A'*X # atx = r8mat_mtv ( m, n, a, x ) # # ATX_NORM # atx_norm = r8vec_norm_l2 ( n, atx ) # # Value # value = atx_norm / x_norm return value def r8mat_is_null_left_test ( ): #*****************************************************************************80 # ## R8MAT_IS_NULL_LEFT_TEST tests R8MAT_IS_NULL_LEFT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print from r8vec_print import r8vec_print m = 3 n = 3 a = np.array ( [ \ [ 1.0, 2.0, 3.0 ], \ [ 4.0, 5.0, 6.0 ], \ [ 7.0, 8.0, 9.0 ] ]) x = np.array ( [ 1.0, -2.0, 1.0 ] ) print '' print 'R8MAT_IS_NULL_LEFT_TEST:' print ' R8MAT_IS_NULL_LEFT tests whether the M vector X' print ' is a left null vector of A, that is, A\'*x=0.' r8mat_print ( m, n, a, ' Matrix A:' ) r8vec_print ( m, x, ' Vector X:' ) enorm = r8mat_is_null_left ( m, n, a, x ) print '' print ' Frobenius norm of A\'*x is %g' % ( enorm ) print '' print 'R8MAT_IS_NULL_LEFT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8mat_is_null_left_test ( ) timestamp ( )