#!/usr/bin/env python def r8mat_mmt ( n1, n2, n3, a, b ): #*****************************************************************************80 # ## R8MAT_MMT multiplies an R8MAT times a transposed R8MAT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N1, N2, N3, the order of the matrices. # # Input, real A(N1,N2), B(N3,N2), the matrices to multiply. # # Output, real C(N1,N3), the product matrix C = A * B'. # import numpy as np c = np.zeros ( ( n1, n3 ) ) for j in range ( 0, n3 ): for i in range ( 0, n1 ): for k in range ( 0, n2 ): c[i,j] = c[i,j] + a[i,k] * b[j,k] return c def r8mat_mmt_test ( ): #*****************************************************************************80 # ## R8MAT_MMT_TEST tests R8MAT_MMT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print n1 = 4 n2 = 3 n3 = n1 print '' print 'R8MAT_MMT_TEST' print ' R8MAT_MMT computes a matrix-matrix product C = A * B\';' a = np.zeros ( ( n1, n2 ) ) for i in range ( 0, n1 ): for j in range ( 0, n2 ): if ( j == 0 ): a[i,j] = 1.0 elif ( i == 0 ): a[i,j] = 0.0 else: a[i,j] = a[i-1,j-1] + a[i-1,j] b = np.copy ( a ) c = r8mat_mmt ( n1, n2, n3, a, b ) r8mat_print ( n1, n2, a, ' A:' ) r8mat_print ( n3, n2, b, ' B:' ) r8mat_print ( n1, n3, c, ' C = A*B\':' ) print '' print 'R8MAT_MMT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8mat_mmt_test ( ) timestamp ( )