#!/usr/bin/env python # def r8vec_house_column ( n, a_vec, k ): #*****************************************************************************80 # ## R8VEC_HOUSE_COLUMN defines a Householder premultiplier that "packs" a column. # # Discussion: # # The routine returns a vector V that defines a Householder # premultiplier matrix H(V) that zeros out the subdiagonal entries of # column K of the matrix A. # # H(V) = I - 2 * v * v' # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix A. # # Input, real A_VEC(N), a row or column of the matrix A. # # Input, integer K, the "special" entry in A_VEC. # The Householder matrix will zero out the entries after this. # # Output, real V(N), a vector of unit L2 norm which defines an # orthogonal Householder premultiplier matrix H with the property # that the K-th column of H*A is zero below the diagonal. # import numpy as np v = np.zeros ( n ) if ( k < 0 or n - 1 <= k ): return v s = 0.0 for i in range ( k, n ): s = s + a_vec[i] ** 2 s = np.sqrt ( s ) if ( s == 0.0 ): return v if ( a_vec[k] < 0.0 ): v[k] = a_vec[k] - abs ( s ) else: v[k] = a_vec[k] + abs ( s ) for i in range ( k + 1, n ): v[i] = a_vec[i] s = 0.0 for i in range ( k, n ): s = s + v[i] ** 2 s = np.sqrt ( s ) for i in range ( k, n ): v[i] = v[i] / s return v def r8vec_house_column_test ( ): #*****************************************************************************80 # ## R8VEC_HOUSE_COLUMN_TEST tests R8VEC_HOUSE_COLUMN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_house_form import r8mat_house_form from r8mat_mm import r8mat_mm from r8mat_print import r8mat_print from r8mat_uniform_ab import r8mat_uniform_ab print '' print 'R8VEC_HOUSE_COLUMN_TEST' print ' R8VEC_HOUSE_COLUMN returns the compact form of' print ' a Householder matrix that "packs" a column' print ' of a matrix.' # # Get a random matrix. # n = 4 r8_lo = 0.0 r8_hi = 5.0 seed = 123456789; a, seed = r8mat_uniform_ab ( n, n, r8_lo, r8_hi, seed ) r8mat_print ( n, n, a, ' Matrix A:' ) a_col = np.zeros ( n ) for k in range ( 0, n - 1 ): print '' print ' Working on column K = %d' % ( k ) for i in range ( 0, n ): a_col[i] = a[i,k] v = r8vec_house_column ( n, a_col, k ) h = r8mat_house_form ( n, v ) r8mat_print ( n, n, h, ' Householder matrix H:' ) ha = r8mat_mm ( n, n, n, h, a ) r8mat_print ( n, n, ha, ' Product H*A:' ) # # If we set A := HA, then we can successively convert A to upper # triangular form. # a = ha print '' print 'R8VEC_HOUSE_COLUMN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8vec_house_column_test ( ) timestamp ( )