#! /usr/bin/env python # def redheffer ( n ): #*****************************************************************************80 # ## REDHEFFER returns the REDHEFFER matrix. # # Formula: # # if ( J = 1 or mod ( J, I ) == 0 ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # N = 5 # # 1 1 1 1 1 # 1 1 0 1 0 # 1 0 1 0 0 # 1 0 0 1 0 # 1 0 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # The diagonal entries of A are all 1. # # A is a zero/one matrix. # # N - int ( log2 ( N ) ) - 1 eigenvalues are equal to 1. # # There is a real eigenvalue of magnitude approximately sqrt ( N ), # which is the spectral radius of the matrix. # # There is a negative eigenvalue of value approximately -sqrt ( N ). # # The remaining eigenvalues are "small", and there is a conjecture # that they lie inside the unit circle in the complex plane. # # The determinant is equal to the Mertens function M(N). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Wayne Barrett, Tyler Jarvis, # Spectral Properties of a Matrix of Redheffer, # Linear Algebra and Applications, # Volume 162, 1992, pages 673-683. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == 0 or ( ( j + 1 ) % ( i + 1 ) ) == 0 ): a[i,j] = 1.0 return a def redheffer_determinant ( n ): #*****************************************************************************80 # ## REDHEFFER_DETERMINANT computes the determinant of the REDHEFFER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from mertens import mertens value = mertens ( n ) return value def redheffer_determinant_test ( ): #*****************************************************************************80 # ## REDHEFFER_DETERMINANT_TEST tests REDHEFFER_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from redheffer import redheffer from r8mat_print import r8mat_print print '' print 'REDHEFFER_DETERMINANT_TEST' print ' REDHEFFER_DETERMINANT computes the REDHEFFER determinant.' m = 5 n = m a = redheffer ( n ) r8mat_print ( m, n, a, ' REDHEFFER matrix:' ) value = redheffer_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'REDHEFFER_DETERMINANT_TEST' print ' Normal end of execution.' return def redheffer_test ( ): #*****************************************************************************80 # ## REDHEFFER_TEST tests REDHEFFER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'REDHEFFER_TEST' print ' REDHEFFER computes the REDHEFFER matrix.' m = 5 n = m a = redheffer ( n ) r8mat_print ( m, n, a, ' REDHEFFER matrix:' ) print '' print 'REDHEFFER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) redheffer_test ( ) timestamp ( )