#! /usr/bin/env python # def ring_adj ( m, n ): #*****************************************************************************80 # ## RING_ADJ returns the RING_ADJ matrix. # # Discussion: # # This is the adjacency matrix for a set of points on a circle. # # Example: # # N = 5 # # 0 1 0 0 1 # 1 0 1 0 0 # 0 1 0 1 0 # 0 0 1 0 1 # 1 0 0 1 0 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The determinant for N = 1 is 1, for N = 2 is -1, and for 2 < N, # mod ( N, 4 ) = 1 ==> det ( A ) = 2 # mod ( N, 4 ) = 2 ==> det ( A ) = -4 # mod ( N, 4 ) = 3 ==> det ( A ) = 2 # mod ( N, 4 ) = 0 ==> det ( A ) = 0 # # A is a zero/one matrix. # # A is an adjacency matrix. # # A has a zero diagonal. # # A is cyclic tridiagonal. # # A is a circulant matrix: each row is shifted once to get the next row. # # A has a constant row sum of 2. # # Because it has a constant row sum of 2, # A has an eigenvalue of 2, and # a (right) eigenvector of ( 1, 1, 1, ..., 1 ). # # A has a constant column sum of 2. # # Because it has a constant column sum of 2, # A has an eigenvalue of 2, and # a (left) eigenvector of ( 1, 1, 1, ..., 1 ). # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). # # A has an eigenvector of ( 1, 1, 1, ..., 1 ) with eigenvalue of 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i + 1 or j == i - 1 or j == i + 1 - n or j == i - 1 + n ): a[i,j] = 1.0 return a def ring_adj_determinant ( n ): #*****************************************************************************80 # ## RING_ADJ_DETERMINANT returns the determinant of the RING_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # if ( n == 1 ): value = 1.0 elif ( n == 2 ): value = -1.0 elif ( ( n % 4 ) == 0 ): value = 0.0 elif ( ( n % 4 ) == 1 ): value = 2.0 elif ( ( n % 4 ) == 2 ): value = -4.0 elif ( ( n % 4 ) == 3 ): value = 2.0 return value def ring_adj_null_left ( m, n ): #*****************************************************************************80 # ## RING_ADJ_NULL_LEFT returns a left null vector of the RING_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), the null vector. # import numpy as np from sys import exit if ( ( m % 4 ) != 0 ): print '' print 'RING_ADJ_NULL_LEFT - Fatal error!' print ' M must be a multiple of 4.' exit ( 'RING_ADJ_NULL_LEFT - Fatal error!' ) x = np.zeros ( m ) for i in range ( 0, m, 4 ): x[i] = + 1.0 x[i+1] = + 1.0 x[i+2] = - 1.0 x[i+3] = - 1.0 return x def ring_adj_null_right ( m, n ): #*****************************************************************************80 # ## RING_ADJ_NULL_RIGHT returns a right null vector of the RING_ADJ matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), the null vector. # import numpy as np from sys import exit if ( ( n % 4 ) != 0 ): print '' print 'RING_ADJ_NULL_RIGHT - Fatal error!' print ' N must be a multiple of 4.' exit ( 'RING_ADJ_NULL_RIGHT - Fatal error!' ) x = np.zeros ( n ) for i in range ( 0, n, 4 ): x[i] = + 1.0 x[i+1] = + 1.0 x[i+2] = - 1.0 x[i+3] = - 1.0 return x def ring_adj_test ( ): #*****************************************************************************80 # ## RING_ADJ_TEST tests RING_ADJ. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'RING_ADJ_TEST' print ' RING_ADJ computes the RING_ADJ matrix.' m = 6 n = m a = ring_adj ( m, n ) r8mat_print ( m, n, a, ' RING_ADJ matrix:' ) print '' print 'RING_ADJ_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) ring_adj_test ( ) timestamp ( )