#! /usr/bin/env python # def ris ( n ): #*****************************************************************************80 # ## RIS returns the RIS matrix. # # Discussion: # # This is sometimes called the "dingdong" matrix, invented by F N Ris. # # Formula: # # A(I,J) = 1 / ( 3 + 2 * N - 2 * I - 2 * J ) # # Example: # # N = 5 # # 1/9 1/7 1/5 1/3 1 # 1/7 1/5 1/3 1 -1 # 1/5 1/3 1 -1 -1/3 # 1/3 1 -1 -1/3 -1/5 # 1 -1 -1/3 -1/5 -1/7 # # Properties: # # A is a Cauchy matrix. # # A is a Hankel matrix: constant along anti-diagonals. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The eigenvalues of A cluster around PI/2 and -PI/2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Reference: # # John Nash, # Compact Numerical Methods for Computers: Linear Algebra and # Function Minimisation, # John Wiley, 1979, page 210. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = 1.0 / float ( 2 * n - 2 * i - 2 * j - 1 ) return a def ris_determinant ( n ): #*****************************************************************************80 # ## RIS_DETERMINANT computes the determinant of the RIS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # top = 1.0 for i in range ( 1, n + 1 ): for j in range ( i + 1, n + 1 ): top = top * float ( 4 * ( i - j ) * ( i - j ) ) bottom = 1.0 for i in range ( 1, n + 1 ): for j in range ( 1, n + 1 ): bottom = bottom * float ( 3 + 2 * n - 2 * i - 2 * j ) value = top / bottom return value def ris_determinant_test ( ): #*****************************************************************************80 # ## RIS_DETERMINANT_TEST tests RIS_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # from ris import ris from r8mat_print import r8mat_print print '' print 'RIS_DETERMINANT_TEST' print ' RIS_DETERMINANT computes the RIS determinant.' m = 5 n = m a = ris ( n ) r8mat_print ( m, n, a, ' RIS matrix:' ) value = ris_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'RIS_DETERMINANT_TEST' print ' Normal end of execution.' return def ris_inverse ( n ): #*****************************************************************************80 # ## RIS_INVERSE returns the inverse of the RIS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): top = 1.0 bot1 = 1.0 bot2 = 1.0 for k in range ( 0, n ): top = top * float ( 3 + 2 * n - 2 * ( j + 1 ) - 2 * ( k + 1 ) ) \ * ( 3 + 2 * n - 2 * ( k + 1 ) - 2 * ( i + 1 ) ) if ( k != j ): bot1 = bot1 * float ( 2 * ( k - j ) ) if ( k != i ): bot2 = bot2 * float ( 2 * ( k - i ) ) a[i,j] = top / ( float ( 3 + 2 * n - 2 * ( j + 1 ) - 2 * ( i + 1 ) ) \ * bot1 * bot2 ); return a def ris_test ( ): #*****************************************************************************80 # ## RIS_TEST tests RIS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'RIS_TEST' print ' RIS computes the RIS matrix.' m = 5 n = m a = ris ( n ) r8mat_print ( m, n, a, ' RIS matrix:' ) print '' print 'RIS_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) ris_test ( ) timestamp ( )