#! /usr/bin/env python # def rosser1 ( ): #*****************************************************************************80 # ## ROSSER1 returns the ROSSER1 matrix. # # Formula: # # 611 196 -192 407 -8 -52 -49 29 # 196 899 113 -192 -71 -43 -8 -44 # -192 113 899 196 61 49 8 52 # 407 -192 196 611 8 44 59 -23 # -8 -71 61 8 411 -599 208 208 # -52 -43 49 44 -599 411 208 208 # -49 -8 8 59 208 208 99 -911 # 29 -44 52 -23 208 208 -911 99 # # Properties: # # A is singular. # # det ( A ) = 0. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # The eigenvalues of A are: # # a = sqrt(10405), b = sqrt(26), # # LAMBDA = (-10*a, 0, 510-100*b, 1000, 1000, 510+100*b, 1020, 10*a) # # ( 10*a = 1020.04901843, 510-100*b = 0.09804864072 ) # # The eigenvectors are # # ( 2, 1, 1, 2, 102+a, 102+a, -204-2a, -204-2a ) # ( 1, 2, -2, -1, 14, 14, 7, 7 ) # ( 2, -1, 1, -2, 5-b, -5+b, -10+2b, 10-2b ) # ( 7, 14, -14, -7, -2, -2, -1, -1 ) # ( 1, -2, -2, 1, -2, 2, -1, 1 ) # ( 2, -1, 1, -2, 5+b, -5-b, -10-2b, 10+2b ) # ( 1, -2, -2, 1, 2, -2, 1, -1 ) # ( 2, 1, 1, 2, 102-a, 102-a, -204+2a, -204+2a ) # # trace ( A ) = 4040. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 4.10, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 61, # LC: QA263.G68. # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(8,8), the matrix. # import numpy as np a = np.array ( [ \ [ 611.0, 196.0, -192.0, 407.0, -8.0, -52.0, -49.0, 29.0 ], \ [ 196.0, 899.0, 113.0, -192.0, -71.0, -43.0, -8.0, -44.0 ], \ [ -192.0, 113.0, 899.0, 196.0, 61.0, 49.0, 8.0, 52.0 ], \ [ 407.0, -192.0, 196.0, 611.0, 8.0, 44.0, 59.0, -23.0 ], \ [ -8.0, -71.0, 61.0, 8.0, 411.0, -599.0, 208.0, 208.0 ], \ [ -52.0, -43.0, 49.0, 44.0, -599.0, 411.0, 208.0, 208.0 ], \ [ -49.0, -8.0, 8.0, 59.0, 208.0, 208.0, 99.0, -911.0 ], \ [ 29.0, -44.0, 52.0, -23.0, 208.0, 208.0, -911.0, 99.0 ] ] ) return a def rosser1_determinant ( ): #*****************************************************************************80 # ## ROSSER1_DETERMINANT computes the determinant of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = 0.0 return value def rosser1_determinant_test ( ): #*****************************************************************************80 # ## ROSSER1_DETERMINANT_TEST tests ROSSER1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # from rosser1 import rosser1 from r8mat_print import r8mat_print print '' print 'ROSSER1_DETERMINANT_TEST' print ' ROSSER1_DETERMINANT computes the ROSSER1 determinant.' seed = 123456789 m = 8 n = m a = rosser1 ( ) r8mat_print ( n, n, a, ' ROSSER1 matrix:' ) value = rosser1_determinant ( ) print ' Value = %g' % ( value ) print '' print 'ROSSER1_DETERMINANT_TEST' print ' Normal end of execution.' return def rosser1_eigen_left ( ): #*****************************************************************************80 # ## ROSSER1_EIGEN_LEFT returns left eigenvectors of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(8,8), the eigenvector matrix. # import numpy as np a = np.sqrt ( 10405.0 ) b = np.sqrt ( 26.0 ) x = np.zeros ( ( 8, 8 ) ) # # Note that the matrix entries are listed by ROW # x = np.array ( [ \ [ 2.0, 1.0, 1.0, 2.0, 102.0 + a, 102.0 + a, -204.0 - 2.0 * a, -204.0 - 2.0 * a ], \ [ 1.0, 2.0, -2.0, -1.0, 14.0, 14.0, 7.0, 7.0 ], \ [ 2.0, -1.0, 1.0, -2.0, 5.0 - b, -5.0 + b, -10.0 + 2.0 * b, 10.0 - 2.0 * b ], \ [ 7.0, 14.0, -14.0, -7.0, -2.0, -2.0, -1.0, -1.0 ], \ [ 1.0, -2.0, -2.0, 1.0, -2.0, 2.0, -1.0, 1.0 ], \ [ 2.0, -1.0, 1.0, -2.0, 5.0 + b, -5.0 - b, -10.0 - 2.0 * b, 10.0 + 2.0 * b ], \ [ 1.0, -2.0, -2.0, 1.0, 2.0, -2.0, 1.0, -1.0 ], \ [ 2.0, 1.0, 1.0, 2.0, 102.0 - a, 102.0 - a, -204.0 + 2.0 * a, -204.0 + 2.0 * a ] ] ) return x def rosser1_eigen_right ( ): #*****************************************************************************80 # ## ROSSER1_EIGEN_RIGHT returns right eigenvectors of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(8,8), the eigenvector matrix. # import numpy as np a = np.sqrt ( 10405.0 ) b = np.sqrt ( 26.0 ) x = np.zeros ( ( 8, 8 ) ) # # Note that the matrix entries are listed by ROW # x = np.array ( [ \ [ 2.0, 1.0, 1.0, 2.0, 102.0 + a, 102.0 + a, -204.0 - 2.0 * a, -204.0 - 2.0 * a ], \ [ 1.0, 2.0, -2.0, -1.0, 14.0, 14.0, 7.0, 7.0 ], \ [ 2.0, -1.0, 1.0, -2.0, 5.0 - b, -5.0 + b, -10.0 + 2.0 * b, 10.0 - 2.0 * b ], \ [ 7.0, 14.0, -14.0, -7.0, -2.0, -2.0, -1.0, -1.0 ], \ [ 1.0, -2.0, -2.0, 1.0, -2.0, 2.0, -1.0, 1.0 ], \ [ 2.0, -1.0, 1.0, -2.0, 5.0 + b, -5.0 - b, -10.0 - 2.0 * b, 10.0 + 2.0 * b ], \ [ 1.0, -2.0, -2.0, 1.0, 2.0, -2.0, 1.0, -1.0 ], \ [ 2.0, 1.0, 1.0, 2.0, 102.0 - a, 102.0 - a, -204.0 + 2.0 * a, -204.0 + 2.0 * a ] ] ) x = np.transpose ( x ) return x def rosser1_eigenvalues ( ): #*****************************************************************************80 # ## ROSSER1_EIGENVALUES returns the eigenvalues of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAMBDA(8,1), the eigenvalues. # import numpy as np a = np.sqrt ( 10405.0 ) b = np.sqrt ( 26.0 ) lam = np.array ( [ \ [ -10.0 * a ], \ [ 0.0 ], \ [ 510.0 - 100.0 * b ], \ [ 1000.0 ], \ [ 1000.0 ], \ [ 510.0 + 100.0 * b ], \ [ 1020.0 ], \ [ 10.0 * a ] ] ) return lam def rosser1_null_left ( ): #*****************************************************************************80 # ## ROSSER1_NULL_LEFT returns a left null vector of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(8), the null vector. # import numpy as np x = np.array ( [ \ [ 1.0 ], \ [ 2.0 ], \ [ -2.0 ], \ [ -1.0 ], \ [ 14.0 ], \ [ 14.0 ], \ [ 7.0 ], \ [ 7.0 ] ] ) return x def rosser1_eigenvalues ( ): #*****************************************************************************80 # ## ROSSER1_EIGENVALUES returns the eigenvalues of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAM(8), the eigenvalues. # import numpy as np a = np.sqrt ( 10405.0 ) b = np.sqrt ( 26.0 ) lam = np.array ( [ \ [ -10.0 * a ], \ [ 0.0 ], \ [ 510.0 - 100.0 * b ], \ [ 1000.0 ], \ [ 1000.0 ], \ [ 510.0 + 100.0 * b ], \ [ 1020.0 ], \ [ 10.0 * a ] ] ) return lam def rosser1_null_right ( ): #*****************************************************************************80 # ## ROSSER1_NULL_RIGHT returns a right null vector of the ROSSER1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(8), the null vector. # import numpy as np x = np.array ( [ \ [ 1.0 ], \ [ 2.0 ], \ [ -2.0 ], \ [ -1.0 ], \ [ 14.0 ], \ [ 14.0 ], \ [ 7.0 ], \ [ 7.0 ] ] ) return x def rosser1_test ( ): #*****************************************************************************80 # ## ROSSER1_TEST tests ROSSER1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'ROSSER1_TEST' print ' ROSSER1 computes the ROSSER1 matrix.' n = 8 a = rosser1 ( ) r8mat_print ( n, n, a, ' ROSSER1 matrix:' ) print '' print 'ROSSER1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) rosser1_test ( ) rosser1_determinant ( ) timestamp ( )