#! /usr/bin/env python # def rutis1 ( ): #*****************************************************************************80 # ## RUTIS1 returns the RUTIS1 matrix. # # Example: # # 6 4 4 1 # 4 6 1 4 # 4 1 6 4 # 1 4 4 6 # # Properties: # # A is symmetric: A' = A. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A has constant row sums. # # Because it has a constant row sum of 15, # A has an eigenvalue of 15, and # a (right) eigenvector of ( 1, 1, 1, 1 ). # # A has constant column sums. # # Because it has a constant column sum of 15, # A has an eigenvalue of 15, and # a (left) eigenvector of ( 1, 1, 1, ..., 1 ). # # A has a repeated eigenvalue. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 6.0, 4.0, 4.0, 1.0 ], \ [ 4.0, 6.0, 1.0, 4.0 ], \ [ 4.0, 1.0, 6.0, 4.0 ], \ [ 1.0, 4.0, 4.0, 6.0 ] ] ); return a def rutis1_condition ( ): #*****************************************************************************80 # ## RUTIS1_CONDITION returns the L1 condition of the RUTIS1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the condition. # a_norm = 15.0 b_norm = 1.0 value = a_norm * b_norm return value def rutis1_condition_test ( ): #*****************************************************************************80 # ## RUTIS1_CONDITION_TEST tests RUTIS1_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # from rutis1 import rutis1 from r8mat_print import r8mat_print print '' print 'RUTIS1_CONDITION_TEST' print ' RUTIS1_CONDITION computes the condition of the RUTIS1 matrix.' print '' n = 4 a = rutis1 ( ) r8mat_print ( n, n, a, ' RUTIS1 matrix:' ) value = rutis1_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'RUTIS1_CONDITION_TEST' print ' Normal end of execution.' return def rutis1_determinant ( ): #*****************************************************************************80 # ## RUTIS1_DETERMINANT returns the determinant of the RUTIS1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = - 375.0 return value def rutis1_determinant_test ( ): #*****************************************************************************80 # ## RUTIS1_DETERMINANT_TEST tests RUTIS1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # from rutis1 import rutis1 from r8mat_print import r8mat_print print '' print 'RUTIS1_DETERMINANT_TEST' print ' RUTIS1_DETERMINANT computes the determinant of the RUTIS1 matrix.' print '' n = 4 a = rutis1 ( ) r8mat_print ( n, n, a, ' RUTIS1 matrix:' ) value = rutis1_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'RUTIS1_DETERMINANT_TEST' print ' Normal end of execution.' return def rutis1_eigen_right ( ): #*****************************************************************************80 # ## RUTIS1_EIGEN_RIGHT returns the right eigenvectors of the RUTIS1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the right eigenvector matrix. # import numpy as np a = np.array ( [ \ [ 1.0, 1.0, 0.0, 1.0 ], \ [ 1.0, 0.0, 1.0, -1.0 ], \ [ 1.0, 0.0, -1.0, -1.0 ], \ [ 1.0, -1.0, 0.0, 1.0 ] ] ) return a def rutis1_eigenvalues ( ): #*****************************************************************************80 # ## RUTIS1_EIGENVALUES returns the eigenvalues of the RUTIS1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAM(4), the eigenvalues. # import numpy as np lam = np.array ( [ \ [ 15.0 ], \ [ 5.0 ], \ [ 5.0 ], \ [ -1.0 ] ] ) return lam def rutis1_inverse ( ): #*****************************************************************************80 # ## RUTIS1_INVERSE returns the inverse of the RUTIS1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ -2.0, 4.0, 4.0, -5.0 ], \ [ 4.0, -2.0, -5.0, 4.0 ], \ [ 4.0, -5.0, -2.0, 4.0 ], \ [ -5.0, 4.0, 4.0, -2.0 ] ] ) for i in range ( 0, 4 ): for j in range ( 0, 4 ): a[i,j] = a[i,j] / 15.0 return a def rutis1_test ( ): #*****************************************************************************80 # ## RUTIS1_TEST tests RUTIS1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'RUTIS1_TEST' print ' RUTIS1 computes the RUTIS1 matrix.' n = 4 a = rutis1 ( ) r8mat_print ( n, n, a, ' RUTIS1 matrix:' ) print '' print 'RUTIS1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) rutis1_test ( ) timestamp ( )