#! /usr/bin/env python # def rutis2 ( ): #*****************************************************************************80 # ## RUTIS2 returns the RUTIS2 matrix. # # Example: # # 5 4 1 1 # 4 5 1 1 # 1 1 4 2 # 1 1 2 4 # # Properties: # # A is symmetric: A' = A. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A has distinct eigenvalues. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 5.0, 4.0, 1.0, 1.0 ], \ [ 4.0, 5.0, 1.0, 1.0 ], \ [ 1.0, 1.0, 4.0, 2.0 ], \ [ 1.0, 1.0, 2.0, 4.0 ] ] ); return a def rutis2_condition ( ): #*****************************************************************************80 # ## RUTIS2_CONDITION returns the L1 condition of the RUTIS2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the condition. # a_norm = 11.0 b_norm = 1.04 value = a_norm * b_norm return value def rutis2_condition_test ( ): #*****************************************************************************80 # ## RUTIS2_CONDITION_TEST tests RUTIS2_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # from rutis2 import rutis2 from r8mat_print import r8mat_print print '' print 'RUTIS2_CONDITION_TEST' print ' RUTIS2_CONDITION computes the condition of the RUTIS2 matrix.' print '' n = 4 a = rutis2 ( ) r8mat_print ( n, n, a, ' RUTIS2 matrix:' ) value = rutis2_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'RUTIS2_CONDITION_TEST' print ' Normal end of execution.' return def rutis2_determinant ( ): #*****************************************************************************80 # ## RUTIS2_DETERMINANT returns the determinant of the RUTIS2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = 100.0 return value def rutis2_determinant_test ( ): #*****************************************************************************80 # ## RUTIS2_DETERMINANT_TEST tests RUTIS2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # from rutis2 import rutis2 from r8mat_print import r8mat_print print '' print 'RUTIS2_DETERMINANT_TEST' print ' RUTIS2_DETERMINANT computes the determinant of the RUTIS2 matrix.' print '' n = 4 a = rutis2 ( ) r8mat_print ( n, n, a, ' RUTIS2 matrix:' ) value = rutis2_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'RUTIS2_DETERMINANT_TEST' print ' Normal end of execution.' return def rutis2_eigen_right ( ): #*****************************************************************************80 # ## RUTIS2_EIGEN_RIGHT returns the right eigenvectors of the RUTIS2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the right eigenvector matrix. # import numpy as np a = np.array ( [ \ [ 2.0, -1.0, 0.0, -1.0 ], \ [ 2.0, -1.0, 0.0, 1.0 ], \ [ 1.0, 2.0, -1.0, 0.0 ], \ [ 1.0, 2.0, 1.0, 0.0 ] ] ) return a def rutis2_eigenvalues ( ): #*****************************************************************************80 # ## RUTIS2_EIGENVALUES returns the eigenvalues of the RUTIS2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAM(4), the eigenvalues. # import numpy as np lam = np.array ( [ \ [ 10.0 ], \ [ 5.0 ], \ [ 2.0 ], \ [ 1.0 ] ] ) return lam def rutis2_inverse ( ): #*****************************************************************************80 # ## RUTIS2_INVERSE returns the inverse of the RUTIS2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 28.0, -22.0, -1.0, -1.0 ], \ [ -22.0, 28.0, -1.0, -1.0 ], \ [ -1.0, -1.0, 17.0, -8.0 ], \ [ -1.0, -1.0, -8.0, 17.0 ] ] ) for j in range ( 0, 4 ): for i in range ( 0, 4 ): a[i,j] = a[i,j] / 50.0 return a def rutis2_test ( ): #*****************************************************************************80 # ## RUTIS2_TEST tests RUTIS2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'RUTIS2_TEST' print ' RUTIS2 computes the RUTIS2 matrix.' n = 4 a = rutis2 ( ) r8mat_print ( n, n, a, ' RUTIS2 matrix:' ) print '' print 'RUTIS2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) rutis2_test ( ) timestamp ( )