#! /usr/bin/env python # def rutis5 ( ): #*****************************************************************************80 # ## RUTIS5 returns the RUTIS5 matrix. # # Example: # # 10 1 4 0 # 1 10 5 -1 # 4 5 10 7 # 0 -1 7 9 # # Properties: # # A is symmetric: A' = A. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 October 2007 # # Author: # # John Burkardt # # Reference: # # John Todd, # Basic Numerical Mathematics, Volume 2: Numerical Algebra, # Academic Press, 1977. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 10.0, 1.0, 4.0, 0.0 ], \ [ 1.0, 10.0, 5.0, -1.0 ], \ [ 4.0, 5.0, 10.0, 7.0 ], \ [ 0.0, -1.0, 7.0, 9.0 ] ] ); return a def rutis5_condition ( ): #*****************************************************************************80 # ## RUTIS5_CONDITION returns the L1 condition of the RUTIS5 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # # Parameters: # # Output, real COND, the L1 condition number. # cond = 62608.0 return cond def rutis5_condition_test ( ): #*****************************************************************************80 # ## RUTIS5_CONDITION_TEST tests RUTIS5_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # from rutis5 import rutis5 from r8mat_print import r8mat_print print '' print 'RUTIS5_CONDITION_TEST' print ' RUTIS5_CONDITION computes the condition of the RUTIS5 matrix.' print '' seed = 123456789 n = 4 a = rutis5 ( ) r8mat_print ( n, n, a, ' RUTIS5 matrix:' ) value = rutis5_condition ( ) print '' print ' Value = %' % ( value ) print '' print 'RUTIS5_CONDITION_TEST' print ' Normal end of execution.' return def rutis5_determinant ( ): #*****************************************************************************80 # ## RUTIS5_DETERMINANT returns the determinant of the RUTIS5 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = 1.0 return value def rutis5_determinant_test ( ): #*****************************************************************************80 # ## RUTIS5_DETERMINANT_TEST tests RUTIS5_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # from rutis5 import rutis5 from r8mat_print import r8mat_print print '' print 'RUTIS5_DETERMINANT_TEST' print ' RUTIS5_DETERMINANT computes the determinant of the RUTIS5 matrix.' print '' seed = 123456789 n = 4 a = rutis1 ( ) r8mat_print ( n, n, a, ' RUTIS5 matrix:' ) value = rutis5_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'RUTIS5_DETERMINANT_TEST' print ' Normal end of execution.' return def rutis5_eigen_right ( ): #*****************************************************************************80 # ## RUTIS5_EIGEN_RIGHT returns the right eigenvectors of the RUTIS5 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the right eigenvector matrix. # import numpy as np a = np.array ( [ \ [ 0.356841883715928, \ 0.382460905084129, \ 0.718205429169617, \ 0.458877421126365 ], \ [ -0.341449101169948, \ -0.651660990948502, \ 0.087555987078632, \ 0.671628180850787 ], \ [ 0.836677864423576, \ -0.535714651223808, \ -0.076460316709461, \ -0.084461728708607 ], \ [ -0.236741488801405, \ -0.376923628103094, \ 0.686053008598214, \ - 0.575511351279045 ] ] ) a = np.transpose ( a ) return a def rutis5_eigenvalues ( ): #*****************************************************************************80 # ## RUTIS5_EIGENVALUES returns the eigenvalues of the RUTIS5 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAM(4), the eigenvalues. # import numpy as np lam = np.array ( [ \ [ 19.122479087555860 ], \ [ 10.882816916492464 ], \ [ 8.994169735037230 ], \ [ 0.000534260914449 ] ] ) return lam def rutis5_inverse ( ): #*****************************************************************************80 # ## RUTIS5_INVERSE returns the inverse of the RUTIS5 matrix. # # Example: # # 105 167 -304 255 # 167 266 -484 406 # -304 -484 881 -739 # 255 406 -739 620 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Reference: # # John Todd, # Basic Numerical Mathematics, Volume 2: Numerical Algebra, # Academic Press, 1977. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 105.0, 167.0, -304.0, 255.0 ], \ [ 167.0, 266.0, -484.0, 406.0 ], \ [ -304.0, -484.0, 881.0, -739.0 ], \ [ 255.0, 406.0, -739.0, 620.0 ] ] ) return a def rutis5_test ( ): #*****************************************************************************80 # ## RUTIS5_TEST tests RUTIS5. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'RUTIS5_TEST' print ' RUTIS5 computes the RUTIS5 matrix.' n = 4 a = rutis5 ( ) r8mat_print ( n, n, a, ' RUTIS5 matrix:' ) print '' print 'RUTIS5_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) rutis5_test ( ) timestamp ( )