#! /usr/bin/env python # def schur_block ( n, x, y ): #*****************************************************************************80 # ## SCHUR_BLOCK returns the SCHUR_BLOCK matrix. # # Formula: # # if ( i == j ) # a(i,j) = x( (i+1)/2 ) # else ( mod ( i, 2 ) == 1 & j == i + 1 ) # a(i,j) = y( (i+1)/2 ) # else ( mod ( i, 2 ) == 0 & j == i - 1 ) # a(i,j) = -y( (i+1)/2 ) # else # a(i,j) = 0.0 # # Example: # # N = 5, X = ( 1, 2, 3 ), Y = ( 4, 5 ) # # 1 4 0 0 0 # -4 1 0 0 0 # 0 0 2 5 0 # 0 0 -5 2 0 # 0 0 0 0 3 # # Properties: # # A is generally not symmetric: A' /= A. # # A is block diagonal, with the blocks being 2 by 2 or 1 by 1 in size. # # A is in real Schur form. # # The eigenvalues of A are X(I) +/- sqrt ( - 1 ) * Y(I) # # A is tridiagonal. # # A is banded, with bandwidth 3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Reference: # # Francoise Chatelin, # Section 4.2.7, # Eigenvalues of Matrices, # John Wiley, 1993. # # Francoise Chatelin, Valerie Fraysse, # Qualitative computing: Elements of a theory for finite precision # computation, Lecture notes, # CERFACS, Toulouse, France and THOMSON-CSF, Orsay, France, June 1993. # # Parameters: # # Input, integer N, the order of A. # # Input, real X( (N+1)/2 ), specifies the diagonal elements # of A. # # Input, real Y( N/2 ), specifies the off-diagonal elements # of the Schur blocks. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): ih = ( i // 2 ) for j in range ( 0, n ): if ( i == j ): a[i,j] = x[ih] elif ( ( i % 2 ) == 0 and j == i + 1 ): a[i,j] = y[ih] elif ( ( i % 2 ) == 1 and j == i - 1 ): a[i,j] = - y[ih] return a def schur_block_determinant ( n, x, y ): #*****************************************************************************80 # ## SCHUR_BLOCK_DETERMINANT returns the determinant of the SCHUR_BLOCK matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real X( (N+1)/2 ), specifies the diagonal # elements of A. # # Input, real Y( N/2 ), specifies the off-diagonal # elements of the Schur blocks. # # Output, real VALUE, the determinant of A. # value = 1.0; ihi = ( n // 2 ) for i in range ( 0, ihi ): value = value * ( x[i] ** 2 + y[i] ** 2 ) if ( ( n % 2 ) == 1 ): value = value * x[ihi] return value def schur_block_inverse ( n, x, y ): #*****************************************************************************80 # ## SCHUR_BLOCK_INVERSE returns the inverse of the SCHUR_BLOCK matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real X( (N+1)/2 ), specifies the diagonal elements # of A. # # Input, real Y( N/2 ), specifies the off-diagonal elements # of the Schur blocks. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): k = ( i // 2 ) if ( i == j ): if ( i == n - 1 and ( n % 2 ) == 1 ): a[i,j] = 1.0 / x[k] else: a[i,j] = x[k] / ( x[k] ** 2 + y[k] ** 2 ) elif ( ( i % 2 ) == 0 and j == i + 1 ): a[i,j] = - y[k] / ( x[k] ** 2 + y[k] ** 2 ) elif ( ( i % 2 ) == 1 and j == i - 1 ): a[i,j] = y[k] / ( x[k] ** 2 + y[k] ** 2 ) return a def schur_block_test ( ): #*****************************************************************************80 # ## SCHUR_BLOCK_TEST tests SCHUR_BLOCK. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8vec_uniform_ab import r8vec_uniform_ab print '' print 'SCHUR_BLOCK_TEST' print ' SCHUR_BLOCK computes the SCHUR_BLOCK matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x_n = ( ( n + 1 ) // 2 ) x, seed = r8vec_uniform_ab ( x_n, r8_lo, r8_hi, seed ) y_n = ( n // 2 ) y, seed = r8vec_uniform_ab ( y_n, r8_lo, r8_hi, seed ) a = schur_block ( n, x, y ) r8mat_print ( n, n, a, ' SCHUR_BLOCK matrix:' ) print '' print 'SCHUR_BLOCK_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) schur_block_test ( ) timestamp ( )