#! /usr/bin/env python # def spline ( n, x ): #*****************************************************************************80 # ## SPLINE returns the SPLINE matrix. # # Discussion: # # This matrix arises during interpolation with cubic splines. # # Formula: # # if ( I = 1 and J = I ) # A(I,J) = 2 * X(I) # elseif ( I = 1 and J = I + 1 ) # A(I,J) = X(I) # elseif ( I = N and J = I ) # A(I,J) = 2 * X(N-1) # elseif ( I = N and J = I - 1 ) # A(I,J) = X(N-1) # elseif ( J = I ) # A(I,J) = 2 * (X(I-1)+X(I)) # elseif ( J = I-1 ) # A(I,J) = X(I-1) # elseif ( J = I + 1 ) # A(I,J) = X(I) # else # A(I,J) = 0 # # Example: # # N = 5 # X = ( 1, 1, 1, 1 ) # # 2 1 0 0 0 # 1 4 1 0 0 # 0 1 4 1 0 # 0 0 1 4 1 # 0 0 0 1 2 # # N = 5 # X = ( 1, 2, 3, 4 ) # # 2 1 0 0 0 # 1 6 2 0 0 # 0 2 10 3 0 # 0 0 3 14 4 # 0 0 0 4 8 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # If the entries of X are positive, then A is positive definite. # # If the entries of X are all of one sign, then A is diagonally dominant. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N-1), values that represent the spacing # between points, and which define the entries of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 and j == 0 ): a[i,j] = 2.0 * x[0] elif ( i == 0 and j == i + 1 ): a[i,j] = x[0] elif ( i == n - 1 and j == i ): a[i,j] = 2.0 * x[n-2] elif ( i == n and j == i - 1 ): a[i,j] = x[n-2] elif ( j == i ): a[i,j] = 2.0 * ( x[i-1] + x[i] ); elif ( j == i - 1 ): a[i,j] = x[i-1] elif ( j == i + 1 ): a[i,j] = x[i] return a def spline_determinant ( n, x ): #*****************************************************************************80 # ## SPLINE_DETERMINANT computes the determinant of the SPLINE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N-1), the elements. # # Output, real VALUE, the determinant. # determ_nm1 = 2.0 * x[n-2] if ( n == 1 ): value = determ_nm1; return value determ_nm2 = determ_nm1 if ( n == 2 ): determ_nm1 = 4.0 * x[n-2] * x[n-2] - x[n-2] * x[n-2] else: determ_nm1 = 4.0 * ( x[n-3] + x[n-2] ) * x[n-2] - x[n-2] * x[n-2] if ( n == 2 ): value = determ_nm1; return value for i in range ( n - 3, -1, -1 ): if ( i == 0 ): value = 2.0 * x[i] * determ_nm1 - x[i] * x[i] * determ_nm2 else: value = 2.0 * ( x[i-1] + x[i] ) * determ_nm1 - x[i] * x[i] * determ_nm2 determ_nm2 = determ_nm1; determ_nm1 = value return value def spline_determinant_test ( ): #*****************************************************************************80 # ## SPLINE_DETERMINANT_TEST tests SPLINE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from spline import spline from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'SPLINE_DETERMINANT_TEST' print ' SPLINE_DETERMINANT computes the SPLINE determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n - 1, r8_lo, r8_hi, seed ) a = spline ( n, x ) r8mat_print ( m, n, a, ' SPLINE matrix:' ) value = spline_determinant ( n, x ) print '' print ' Value = %g' % ( value ) print '' print 'SPLINE_DETERMINANT_TEST' print ' Normal end of execution.' return def spline_inverse ( n, x ): #*****************************************************************************80 # ## SPLINE_INVERSE returns the inverse of the SPLINE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Reference: # # CM daFonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N-1), the parameters. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np from r8_mop import r8_mop d = np.zeros ( n ) d[n-1] = 2.0 * x[n-2] for i in range ( n - 2, 0, -1 ): d[i] = 2.0 * ( x[i-1] + x[i] ) - x[i] * x[i] / d[i+1] d[0] = 2.0 * x[0] - x[0] * x[0] / d[1] e = np.zeros ( n ) e[0] = 2.0 * x[0] for i in range ( 1, n - 1 ): e[i] = 2.0 * ( x[i-1] + x[i] ) - x[i-1] * x[i-1] / e[i-1] e[n-1] = 2.0 * x[n-2] - x[n-2] * x[n-2] / e[n-2] a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i + 1 ): p1 = 1.0 for k in range ( j, i ): p1 = p1 * x[k] p2 = 1.0 for k in range ( i + 1, n ): p2 = p2 * d[k] p3 = 1.0 for k in range ( j, n ): p3 = p3 * e[k] a[i,j] = r8_mop ( i + j ) * p1 * p2 / p3 for j in range ( i + 1, n ): p1 = 1.0 for k in range ( i, j ): p1 = p1 * x[k] p2 = 1.0 for k in range ( j + 1, n ): p2 = p2 * d[k] p3 = 1.0 for k in range ( i, n ): p3 = p3 * e[k] a[i,j] = r8_mop ( i + j ) * p1 * p2 / p3 return a def spline_test ( ): #*****************************************************************************80 # ## SPLINE_TEST tests SPLINE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'SPLINE_TEST' print ' SPLINE computes the SPLINE matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n - 1, r8_lo, r8_hi, seed ) a = spline ( n, x ) r8mat_print ( m, n, a, ' SPLINE matrix:' ) print '' print 'SPLINE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) spline_test ( ) timestamp ( )