#! /usr/bin/env python # def stirling ( m, n ): #*****************************************************************************80 # ## STIRLING returns the STIRLING matrix. # # Comments: # # The absolute value of the Stirling number S1(I,J) gives the number # of permutations on I objects having exactly J cycles, while the # sign of the Stirling number records the sign (odd or even) of # the permutations. For example, there are six permutations on 3 objects: # # A B C 3 cycles (A) (B) (C) # A C B 2 cycles (A) (BC) # B A C 2 cycles (AB) (C) # B C A 1 cycle (ABC) # C A B 1 cycle (ABC) # C B A 2 cycles (AC) (B) # # There are # # 2 permutations with 1 cycle, and S1(3,1) = 2 # 3 permutations with 2 cycles, and S1(3,2) = -3, # 1 permutation with 3 cycles, and S1(3,3) = 1. # # Since there are N! permutations of N objects, the sum of the absolute # values of the Stirling numbers in a given row, # # sum ( 1 <= J <= I ) abs ( S1(I,J) ) = N! # # First terms: # # I/J: 1 2 3 4 5 6 7 8 # # 1 1 0 0 0 0 0 0 0 # 2 -1 1 0 0 0 0 0 0 # 3 2 -3 1 0 0 0 0 0 # 4 -6 11 -6 1 0 0 0 0 # 5 24 -50 35 -10 1 0 0 0 # 6 -120 274 -225 85 -15 1 0 0 # 7 720 -1764 1624 -735 175 -21 1 0 # 8 -5040 13068 -13132 6769 -1960 322 -28 1 # # Recursion: # # S1(I,1) = (-1)^(I-1) * (I-1)! for all I. # S1(I,I) = 1 for all I. # S1(I,J) = 0 if I < J. # # S1(I,J) = S1(I-1,J-1) - (I-1) * S1(I-1,J) # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral: int ( A ) = A. # # A is lower triangular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # After row 1, each row sums to 0. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ); a[0,0] = 1.0 for i in range ( 1, m ): a[i,0] = - float ( i ) * a[i-1,0] for j in range ( 1, n ): a[i,j] = a[i-1,j-1] - float ( i ) * a[i-1,j] return a def stirling_determinant ( n ): #*****************************************************************************80 # ## STIRLING_DETERMINANT computes the determinant of the STIRLING matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def stirling_determinant_test ( ): #*****************************************************************************80 # ## STIRLING_DETERMINANT_TEST tests STIRLING_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from stirling import stirling from r8mat_print import r8mat_print print '' print 'STIRLING_DETERMINANT_TEST' print ' STIRLING_DETERMINANT computes the STIRLING determinant.' m = 5 n = m a = stirling ( m, n ) r8mat_print ( m, n, a, ' STIRLING matrix:' ) value = stirling_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'STIRLING_DETERMINANT_TEST' print ' Normal end of execution.' return def stirling_inverse ( n ): #*****************************************************************************80 # #% STIRLING_INVERSE returns the inverse of the STIRLING matrix. # # Comments: # # The inverse of S1, the matrix of Stirling numbers of the first kind, # is S2, the matrix of Stirling numbers of the second kind. # # S2(I,J) represents the number of distinct partitions of I elements # into J nonempty sets. For any I, the sum over J of the Stirling # numbers S2(I,J) is represented by B(I), called "Bell's number", # and represents the number of distinct partitions of I elements. # # For example, with 4 objects, there are: # # 1 partition into 1 set: # # (A,B,C,D) # # 7 partitions into 2 sets: # # (A,B,C) (D) # (A,B,D) (C) # (A,C,D) (B) # (A) (B,C,D) # (A,B) (C,D) # (A,C) (B,D) # (A,D) (B,C) # # 6 partitions into 3 sets: # # (A,B) (C) (D) # (A) (B,C) (D) # (A) (B) (C,D) # (A,C) (B) (D) # (A,D) (B) (C) # (A) (B,D) (C) # # 1 partition into 4 sets: # # (A) (B) (C) (D) # # So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. # # # First terms: # # I/J: 1 2 3 4 5 6 7 8 # # 1 1 0 0 0 0 0 0 0 # 2 1 1 0 0 0 0 0 0 # 3 1 3 1 0 0 0 0 0 # 4 1 7 6 1 0 0 0 0 # 5 1 15 25 10 1 0 0 0 # 6 1 31 90 65 15 1 0 0 # 7 1 63 301 350 140 21 1 0 # 8 1 127 966 1701 1050 266 28 1 # # Recursion: # # S2(I,1) = 1 for all I. # S2(I,I) = 1 for all I. # S2(I,J) = 0 if I < J. # # S2(I,J) = J * S2(I-1,J) + S2(I-1,J-1) # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is lower triangular. # # A is nonnegative. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 for i in range ( 1, n ): a[i,0] = 1.0 for j in range ( 1, n ): a[i,j] = float ( j + 1 ) * a[i-1,j] + a[i-1,j-1] return a def stirling_test ( ): #*****************************************************************************80 # ## STIRLING_TEST tests STIRLING. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'STIRLING_TEST' print ' STIRLING computes the STIRLING matrix.' m = 5 n = m a = stirling ( m, n ) r8mat_print ( m, n, a, ' STIRLING matrix:' ) print '' print 'STIRLING_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) stirling_test ( ) timestamp ( )