#! /usr/bin/env python # def summation ( m, n ): #*****************************************************************************80 # ## SUMMATION returns the summation matrix. # # Example: # # M = 5, N = 5 # # 1 0 0 0 0 # 1 1 0 0 0 # 1 1 1 0 0 # 1 1 1 1 0 # 1 1 1 1 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is lower triangular. # # A is a 0/1 matrix. # # The vector Y = A * X contains the partial sums of the vector X. # # A is Toeplitz: constant along diagonals. # # A is nonsingular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for j in range ( 0, n ): for i in range ( 0, m ): if ( j <= i ): a[i,j] = 1.0 return a def summation_condition ( n ): #*****************************************************************************80 # ## SUMMATION_CONDITION returns the L1 condition of the SUMMATION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real COND, the L1 condition. # if ( n == 1 ): cond = 1.0 else: cond = 2.0 * float ( n ) return cond def summation_condition_test ( ): #*****************************************************************************80 # ## SUMMATION_CONDITION_TEST tests SUMMATION_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # from summation import summation from r8mat_print import r8mat_print print '' print 'SUMMATION_CONDITION_TEST' print ' SUMMATION_CONDITION computes the condition of the SUMMATION matrix.' print '' n = 4 a = summation ( n, n ) r8mat_print ( n, n, a, ' SUMMATION matrix:' ) value = summation_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'SUMMATION_CONDITION_TEST' print ' Normal end of execution.' return def summation_determinant ( n ): #*****************************************************************************80 # ## SUMMATION_DETERMINANT returns the determinant of the SUMMATION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def summation_determinant_test ( ): #*****************************************************************************80 # ## SUMMATION_DETERMINANT_TEST tests SUMMATION_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from summation import summation from r8mat_print import r8mat_print print '' print 'SUMMATION_DETERMINANT_TEST' print ' SUMMATION_DETERMINANT computes the determinant of the SUMMATION matrix.' print '' n = 4 a = summation ( n, n ) r8mat_print ( n, n, a, ' SUMMATION matrix:' ) value = summation_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'SUMMATION_DETERMINANT_TEST' print ' Normal end of execution.' return def summation_inverse ( n ): #*****************************************************************************80 # ## SUMMATION_INVERSE returns the inverse of the summation matrix. # # Example: # # N = 5 # # 1 0 0 0 0 # -1 1 0 0 0 # 0 -1 1 0 0 # 0 0 -1 1 0 # 0 0 0 -1 1 # # Properties: # # A is lower triangular. # # A is lower bidiagonal. # # Because A is bidiagonal, it has property A (bipartite). # # A is Toeplitz: constant along diagonals. # # A is nonsingular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is the inverse of the summation matrix. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 elif ( i == j + 1 ): a[i,j] = -1.0 return a def summation_test ( ): #*****************************************************************************80 # ## SUMMATION_TEST tests SUMMATION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'SUMMATION_TEST' print ' SUMMATION computes the SUMMATION matrix.' m = 5 n = 4 a = summation ( m, n ) r8mat_print ( m, n, a, ' SUMMATION matrix:' ) print '' print 'SUMMATION_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) summation_test ( ) timestamp ( )