#! /usr/bin/env python # def sweet1 ( ): #*****************************************************************************80 # ## SWEET1 returns the SWEET1 matrix. # # Example: # # 20.0 15.0 2.5 6.0 1.0 -2.0 # 15.0 20.0 15.0 2.5 6.0 1.0 # 2.5 15.0 20.0 15.0 2.5 6.0 # 6.0 2.5 15.0 20.0 15.0 2.5 # 1.0 6.0 2.5 15.0 20.0 15.0 # -2.0 1.0 6.0 2.5 15.0 20.0 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Reference: # # Per Hansen, Tony Chan, # FORTRAN Subroutines for General Toeplitz Systems, # ACM Transactions on Mathematical Software, # Volume 18, Number 3, September 1992, pages 256-273. # # Douglas Sweet, # The use of pivoting to improve the numerical performance of # Toeplitz solvers, # In "Advanced Algorithms and Architectures for Signal Processing", # Edited by J M Speiser, # Proceedings SPIE 696, 1986, pages 8-18. # # Parameters: # # Output, real A(6,6), the matrix. # import numpy as np n = 6 value = np.array ( [ 20.0, 15.0, 2.5, 6.0, 1.0, -2.0 ] ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = value[abs(j-i)]; return a def sweet1_condition ( ): #*****************************************************************************80 # ## SWEET1_CONDITION returns the L1 condition of the SWEET1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the condition. # a_norm = 61.0 b_norm = 0.278145899201815 value = a_norm * b_norm return value def sweet1_condition_test ( ): #*****************************************************************************80 # ## SWEET1_CONDITION_TEST tests SWEET1_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from sweet1 import sweet1 from r8mat_print import r8mat_print print '' print 'SWEET1_CONDITION_TEST' print ' SWEET1_CONDITION computes the condition of the SWEET1 matrix.' print '' n = 6 a = sweet1 ( ) r8mat_print ( n, n, a, ' SWEET1 matrix:' ) value = sweet1_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'SWEET1_CONDITION_TEST' print ' Normal end of execution.' return def sweet1_determinant ( ): #*****************************************************************************80 # ## SWEET1_DETERMINANT returns the determinant of the SWEET1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = - 2.0468186E+07 return value def sweet1_determinant_test ( ): #*****************************************************************************80 # ## SWEET1_DETERMINANT_TEST tests SWEET1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from sweet1 import sweet1 from r8mat_print import r8mat_print print '' print 'SWEET1_DETERMINANT_TEST' print ' SWEET1_DETERMINANT computes the determinant of the SWEET1 matrix.' print '' n = 6 a = sweet1 ( ) r8mat_print ( n, n, a, ' SWEET1 matrix:' ) value = sweet1_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'SWEET1_DETERMINANT_TEST' print ' Normal end of execution.' return def sweet1_inverse ( ): #*****************************************************************************80 # ## SWEET1_INVERSE returns the inverse of the SWEET1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(6,6), the matrix. # import numpy as np a = np.array ( [ \ [ 0.073125159943338, -0.029629732454063, -0.020045010339460, \ 0.032364910109767, -0.056244145182187, 0.052945000841794 ], \ [ -0.029629732454063, 0.046796984109877, 0.019214941666057, \ -0.056592264698005, 0.069667831091627, -0.056244145182187 ], \ [ -0.020045010339460, 0.019214941666057, 0.009031577102143, \ 0.035236537326757, -0.056592264698005, 0.032364910109767 ], \ [ 0.032364910109767, -0.056592264698005, 0.035236537326757, \ 0.009031577102143, 0.019214941666057, -0.020045010339460 ], \ [ -0.056244145182187, 0.069667831091627, -0.056592264698005, \ 0.019214941666057, 0.046796984109877, -0.029629732454063 ], \ [ 0.052945000841794, -0.056244145182187, 0.032364910109767, \ -0.020045010339460, -0.029629732454063, 0.073125159943338 ] ] ) return a def sweet1_test ( ): #*****************************************************************************80 # ## SWEET1_TEST tests SWEET1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'SWEET1_TEST' print ' SWEET1 computes the SWEET1 matrix.' n = 6 a = sweet1 ( ) r8mat_print ( n, n, a, ' SWEET1 matrix:' ) print '' print 'SWEET1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sweet1_test ( ) timestamp ( )