#! /usr/bin/env python # def sylvester_kac ( n ): #*****************************************************************************80 # ## SYLVESTER_KAC returns the SYLVESTER_KAC matrix. # # Formula: # # If J = I - 1 # A(I,J) = N + 1 - I # If J = I + 1 # A(I,J) = I # # Example: # # N = 5, # # 0 1 0 0 0 # 4 0 2 0 0 # 0 3 0 3 0 # 0 0 2 0 4 # 0 0 0 1 0 # # Properties: # # A is generally not symmetric: A' /= A. # # A is tridiagonal. # # If N is odd, the eigenvalues are: # -(N-1), -(N-3), ..., -2, 0, 2, ... (N-3), (N-1). # # If N is even, the eigenvalues are: # -(N-1), -(N-3), ..., -1, +1, ..., (N-3), (N-1). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 April 2015 # # Author: # # John Burkardt # # Reference: # # Paul Clement, # A class of triple-diagonal matrices for test purposes, # SIAM Review, # Volume 1, 1959, pages 50-52. # # Parameters: # # Input, integer N, the number of rows and columns of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n - 1 ): a[i,i+1] = float ( i + 1 ) a[i+1,i] = float ( n - i - 1 ) return a def sylvester_kac_determinant ( n ): #*****************************************************************************80 # ## SYLVESTER_KAC_DETERMINANT computes the determinant of the SYLVESTER_KAC matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # if ( ( n % 2 ) == 1 ): value = 0.0 else: value = 1.0 for i in range ( - n + 1, n + 1, 2 ): value = value * float ( i ) return value def sylvester_kac_eigen_right ( n ): #*****************************************************************************80 # ## SYLVESTER_KAC_EIGEN_RIGHT: right eigenvectors of the SYLVESTER_KAC matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real V(N,N), the right eigenvectors. # import numpy as np from r8_mop import r8_mop b = np.zeros ( n - 1 ) for i in range ( 0, n - 1 ): b[i] = float ( i + 1 ) c = np.zeros ( n - 1 ) for i in range ( 0, n - 1 ): c[i] = float ( n - 1 - i ) v = np.zeros ( ( n, n ) ) for j in range ( 0, n ): lam = - n + 1 + 2 * j a = np.zeros ( n ) a[0] = 1.0 a[1] = - lam for i in range ( 2, n ): a[i] = - lam * a[i-1] - b[i-2] * c[i-2] * a[i-2] bot = 1.0 v[0,j] = 1.0 for i in range ( 1, n ): bot = bot * b[i-1] v[i,j] = r8_mop ( i ) * a[i] / bot return v def sylvester_kac_eigenvalues ( n ): #*****************************************************************************80 # ## SYLVESTER_KAC_EIGENVALUES returns the eigenvalues of the SYLVESTER_KAC matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) i = 0 for i in range ( 0, n ): lam[i] = float ( - n + 1 + 2 * i ) return lam def sylvester_kac_inverse ( n ): #*****************************************************************************80 # ## SYLVESTER_KAC_INVERSE returns the inverse of the SYLVESTER_KAC matrix. # # Example: # # N = 6: # # 0 1/5 0 -2/15 0 8/15 # 1 0 0 0 0 0 # 0 0 0 1/3 0 -4/3 # -4/3 0 1/3 0 0 0 # 0 0 0 0 0 1 # 8/15 0 -2/15 0 1/5 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) == 1 ): print '' print 'SYLVESTER_KAC_INVERSE - Fatal error!' print ' The matrix is singular for odd N.' exit ( 'SYLVESTER_KAC - Fatal error!' ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): if ( ( i % 2 ) == 0 ): for j in range ( i, n - 1, 2 ): if ( j == i ): prod1 = 1.0 / float ( n - 1 - j ) prod2 = 1.0 / float ( 1 + j ) else: prod1 = - prod1 * float ( j ) / float ( n - 1 - j ) prod2 = - prod2 * float ( n - j ) / float ( 1 + j ) a[i,j+1] = prod1 a[j+1,i] = prod2 return a def sylvester_kac_test ( ): #*****************************************************************************80 # ## SYLVESTER_KAC_TEST tests SYLVESTER_KAC. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 April 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'SYLVESTER_KAC_TEST' print ' SYLVESTER_KAC computes the SYLVESTER_KAC matrix.' m = 5 n = m a = sylvester_kac ( n ) r8mat_print ( m, n, a, ' SYLVESTER_KAC matrix:' ) print '' print 'SYLVESTER_KAC_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sylvester_kac_test ( ) timestamp ( )