#! /usr/bin/env python # def symm_random ( n, d, key ): #*****************************************************************************80 # ## SYMM_RANDOM returns the SYMM_RANDOM matrix. # # Properties: # # A is symmetric: A' = A. # # The eigenvalues of A will be real. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real D(N), the desired eigenvalues for the matrix. # # Input, integer KEY, a positive integer that selects the data. # # Output, real A(N,N), the matrix. # import numpy as np from orth_random import orth_random # # Get a random orthogonal matrix Q. # q = orth_random ( n, key ) # # Set A = Q * Lambda * Q'. # a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): for k in range ( 0, n ): a[i,j] = a[i,j] + q[i,k] * d[k] * q[j,k] return a def symm_random_determinant ( n, d, key ): #*****************************************************************************80 # ## SYMM_RANDOM_DETERMINANT computes the determinant of the SYMM_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real D(N), the desired eigenvalues for the matrix. # # Input, integer KEY, a positive integer that selects the data. # # Output, real VALUE, the determinant. # import numpy as np value = np.prod ( d ) return value def symm_random_eigen_left ( n, d, key ): #*****************************************************************************80 # ## SYMM_RANDOM_EIGEN_LEFT returns left eigenvectors for the SYMM_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real D(N), the desired eigenvalues for the matrix. # # Input, integer KEY, a positive integer that selects the data. # # Output, real V(N,N), the vectors. # from orth_random import orth_random # # Get a random orthogonal matrix Q. # x = orth_random ( n, key ) # # Transpose. # for i in range ( 0, n ): for j in range ( 0, i ): t = x[i,j] x[i,j] = x[j,i] x[j,i] = t return x def symm_random_eigen_right ( n, d, key ): #*****************************************************************************80 # ## SYMM_RANDOM_EIGEN_RIGHT returns right eigenvectors for the SYMM_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real D(N), the desired eigenvalues for the matrix. # # Input, integer KEY, a positive integer that selects the data. # # Output, real V(N,N), the vectors. # from orth_random import orth_random # # Get a random orthogonal matrix Q. # x = orth_random ( n, key ) return x def symm_random_eigenvalues ( n, d, key ): #*****************************************************************************80 # ## SYMM_RANDOM_EIGENVALUES returns eigenvalues for the SYMM_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real D(N), the desired eigenvalues for the matrix. # # Input, integer KEY, a positive integer that selects the data. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.copy ( d ) return lam def symm_random_inverse ( n, d, key ): #*****************************************************************************80 # ## SYMM_RANDOM_INVERSE returns the inverse of the SYMM_RANDOM matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real D(N), the desired eigenvalues for the matrix. # # Input, integer KEY, a positive integer that selects the data. # # Output, real A(N,N), the matrix. # import numpy as np from orth_random import orth_random # # Get a random orthogonal matrix Q. # q = orth_random ( n, key ) # # Set A = Q * 1/Lambda * Q'. # a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): for k in range ( 0, n ): a[i,j] = a[i,j] + q[i,k] * ( 1.0 / d[k] ) * q[j,k] return a def symm_random_test ( ): #*****************************************************************************80 # ## SYMM_RANDOM_TEST tests SYMM_RANDOM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'SYMM_RANDOM_TEST' print ' SYMM_RANDOM computes the SYMM_RANDOM matrix.' n = 3 r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 d, seed = r8vec_uniform_ab ( r8_lo, r8_hi, seed ) key = 123456789 a = symm_random ( n, d, key ) r8mat_print ( n, n, a, ' SYMM_RANDOM matrix:' ) print '' print 'SYMM_RANDOM_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) symm_random_test ( ) timestamp ( )