#! /usr/bin/env python # def tri_upper ( alpha, n ): #*****************************************************************************80 # ## TRI_UPPER returns the TRI_UPPER matrix. # # Discussion: # # This matrix is known as the Wilkinson upper triangular matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1 # if ( I < J ) # A(I,J) = ALPHA # else # A(I,J) = 0 # # Example: # # ALPHA = 3, N = 5 # # 1 3 3 3 3 # 0 1 3 3 3 # 0 0 1 3 3 # 0 0 0 1 3 # 0 0 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular. # # A is upper triangular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, value used on the superdiagonals. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 elif ( i < j ): a[i,j] = alpha else: a[i,j] = 0.0 return a def tri_upper_condition ( alpha, n ): #*****************************************************************************80 # ## TRI_UPPER_CONDITION returns the L1 condition of the TRI_UPPER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, value used on the superdiagonals. # # Input, integer N, the order of the matrix. # # Output, real COND, the L1 condition number. # a_norm = ( n - 1 ) * abs ( alpha ) + 1.0 b_norm = 1.0 + abs ( alpha ) \ * ( ( abs ( alpha - 1.0 ) ) ** ( n - 1 ) - 1.0 ) \ / ( abs ( alpha - 1.0 ) - 1.0 ) cond = a_norm * b_norm return cond def tri_upper_condition_test ( ): #*****************************************************************************80 # ## TRI_UPPER_CONDITION_TEST tests TRI_UPPER_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # from tri_upper import tri_upper from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'TRI_UPPER_CONDITION_TEST' print ' TRI_UPPER_CONDITION computes the condition of the TRI_UPPER matrix.' print '' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = tri_upper ( alpha, n ) r8mat_print ( n, n, a, ' TRI_UPPER matrix:' ) value = tri_upper_condition ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'TRI_UPPER_CONDITION_TEST' print ' Normal end of execution.' return def tri_upper_determinant ( alpha, n ): #*****************************************************************************80 # ## TRI_UPPER_DETERMINANT returns the determinant of the TRI_UPPER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, value used on the superdiagonals. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def tri_upper_determinant_test ( ): #*****************************************************************************80 # ## TRI_UPPER_DETERMINANT_TEST tests TRI_UPPER_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # from tri_upper import tri_upper from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'TRI_UPPER_DETERMINANT_TEST' print ' TRI_UPPER_DETERMINANT computes the determinant of the TRI_UPPER matrix.' print '' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = tri_upper ( alpha, n ) r8mat_print ( n, n, a, ' TRI_UPPER matrix:' ) value = tri_upper_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'TRI_UPPER_DETERMINANT_TEST' print ' Normal end of execution.' return def tri_upper_inverse ( alpha, n ): #*****************************************************************************80 # ## TRI_UPPER_INVERSE returns the inverse of the TRI_UPPER matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1 # elseif ( I = J - 1 ) # A(I,J) = -ALPHA # elseif ( I < J ) # A(I,J) = - ALPHA * ( 1-ALPHA)^(J-I-1) # else # A(I,J) = 0 # # Example: # # ALPHA = 3, N = 5 # # 1 -3 6 -12 24 # 0 1 -3 6 -12 # 0 0 1 -3 6 # 0 0 0 1 -3 # 0 0 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular. # # A is upper triangular. # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, value used on the superdiagonals. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 elif ( i == j - 1 ): a[i,j] = - alpha elif ( i < j ): a[i,j] = - alpha * ( 1.0 - alpha ) ** ( j - i - 1 ) return a def tri_upper_test ( ): #*****************************************************************************80 # ## TRI_UPPER_TEST tests TRI_UPPER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'TRI_UPPER_TEST' print ' TRI_UPPER computes the TRI_UPPER matrix.' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) a = tri_upper ( alpha, n ) r8mat_print ( n, n, a, ' TRI_UPPER matrix:' ) print '' print 'TRI_UPPER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) tri_upper_test ( ) timestamp ( )