#! /usr/bin/env python # def tris ( m, n, x, y, z ): #*****************************************************************************80 # ## TRIS returns the TRIS matrix. # # Formula: # # if ( J = I-1 ) # A(I,J) = X # elseif ( J = I ) # A(I,J) = Y # elseif ( J = I + 1 ) # A(I,J) = Z # else # A(I,J) = 0 # # Example: # # M = 5, N = 5, X = 1, Y = 2, Z = 3 # # 2 3 0 0 0 # 1 2 3 0 0 # 0 1 2 3 0 # 0 0 1 2 3 # 0 0 0 1 2 # # Properties: # # A is generally not symmetric: A' /= A. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # A is Toeplitz: constant along diagonals. # # If Y is not zero, then for A to be singular, it must be the case that # # 0.5 * Y / sqrt ( X * Z ) < 1 # # and # # cos (K*PI/(N+1)) = - 0.5 * Y / sqrt ( X * Z ) for some 1 <= K <= N. # # If Y is zero, then A is singular when N is odd, or if X or Z is zero. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A has eigenvalues # # LAMBDA(I) = Y + 2 * sqrt(X*Z) * COS(I*PI/(N+1)) # # The eigenvalues will be complex if X * Z < 0. # # If X = Z, the matrix is symmetric. # # As long as X and Z are nonzero, the matrix is irreducible. # # If X = Z = -1, and Y = 2, the matrix is a symmetric, positive # definite M matrix, the negative of the second difference matrix. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Reference: # # John Todd, # Basic Numerical Mathematics, # Volume 2: Numerical Algebra, # Academic Press, 1978, page 155. # # Parameters: # # Input, integer M, N, the order of A. # # Input, real X, Y, Z, the scalars that define A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( j == i - 1 ): a[i,j] = x elif ( j == i ): a[i,j] = y elif ( j == i + 1 ): a[i,j] = z return a def tris_determinant ( n, x, y, z ): #*****************************************************************************80 # ## TRIS_DETERMINANT computes the determinant of the TRIS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X, Y, Z, parameters. # # Output, real VALUE, the determinant. # import numpy as np value = 1.0 if ( 0.0 <= x * z ): for i in range ( 1, n + 1 ): angle = float ( i ) * np.pi / float ( n + 1 ) value = value * ( y + 2.0 * sqrt ( x * z ) * np.cos ( angle ) ); else: i_hi = ( n // 2 ) for i in range ( 1, i_hi + 1 ): angle = float ( i ) * np.pi / float ( n + 1 ) value = value * ( y * y - 4.0 * x * z * ( np.cos ( angle ) ) ** 2 ) if ( ( n % 2 ) == 1 ): value = value * y return value def tris_determinant_test ( ): #*****************************************************************************80 # ## TRIS_DETERMINANT_TEST tests TRIS_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from tris import tris from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'TRIS_DETERMINANT_TEST' print ' TRIS_DETERMINANT computes the TRIS determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) y, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) z, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = tris ( m, n, x, y, z ) r8mat_print ( m, n, a, ' TRIS matrix:' ) value = tris_determinant ( n, x, y, z ) print '' print ' Value = %g' % ( value ) print '' print 'TRIS_DETERMINANT_TEST' print ' Normal end of execution.' return def tris_inverse ( n, alpha, beta, gam ): #*****************************************************************************80 # ## TRIS_INVERSE returns the inverse of the TRIS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Reference: # # CM daFonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, BETA, GAM, the constant values associated with the # subdiagonal, diagonal and superdiagonal of the matrix. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np from r8_mop import r8_mop d = np.zeros ( n ) d[n-1] = beta for i in range ( n - 2, -1, -1 ): d[i] = beta - alpha * gam / d[i+1] a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i + 1 ): p1 = 1.0 for k in range ( i + 1, n ): p1 = p1 * d[k] p2 = 1.0 for k in range ( 0, n - j ): p2 = p2 * d[k] a[i,j] = r8_mop ( i + j ) * alpha ** ( i - j ) * p1 / p2 for j in range ( i + 1, n ): p1 = 1.0 for k in range ( j + 1, n ): p1 = p1 * d[k] p2 = 1.0 for k in range ( 0, n - i ): p2 = p2 * d[k] a[i,j] = r8_mop ( i + j ) * gam ** ( j - i ) * p1 / p2 return a def tris_test ( ): #*****************************************************************************80 # ## TRIS_TEST tests TRIS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'TRIS_TEST' print ' TRIS computes the TRIS matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) y, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) z, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = tris ( m, n, x, y, z ) r8mat_print ( m, n, a, ' TRIS matrix:' ) print '' print 'TRIS_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) tris_test ( ) timestamp ( )