#! /usr/bin/env python # def triv ( n, x, y, z ): #*****************************************************************************80 # ## TRIV returns the TRIV matrix. # # Discussion: # # The three vectors define the subdiagonal, main diagonal, and # superdiagonal. # # Formula: # # if ( J = I - 1 ) # A(I,J) = X(J) # elseif ( J = I ) # A(I,J) = Y(I) # elseif ( J = I + 1 ) # A(I,J) = Z(I) # else # A(I,J) = 0 # # Example: # # N = 5, X = ( 1, 2, 3, 4 ), Y = ( 5, 6, 7, 8, 9 ), Z = ( 10, 11, 12, 13 ) # # 5 10 0 0 0 # 1 6 11 0 0 # 0 2 7 12 0 # 0 0 3 8 13 # 0 0 0 4 9 # # Properties: # # A is tridiagonal. # # A is banded, with bandwidth 3. # # A is generally not symmetric: A' /= A. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N-1), Y(N), Z(N-1), the vectors that define # the subdiagonal, diagonal, and superdiagonal of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i - 1 ): a[i,j] = x[j] elif ( j == i ): a[i,j] = y[i] elif ( j == i + 1 ): a[i,j] = z[i] return a def triv_determinant ( n, x, y, z ): #*****************************************************************************80 # ## TRIV_DETERMINANT computes the determinant of the TRIV matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N-1), Y(N), Z(N-1), the vectors that define # the subdiagonal, diagonal, and superdiagonal of A. # # Output, real VALUE, the determinant. # determ_nm1 = y[n-1] if ( n == 1 ): value = determ_nm1 return value determ_nm2 = determ_nm1 determ_nm1 = y[n-2] * y[n-1] - z[n-2] * x[n-2]; if ( n == 2 ): value = determ_nm1 return value for i in range ( n - 3, -1, -1 ): value = y[i] * determ_nm1 - z[i] * x[i] * determ_nm2 determ_nm2 = determ_nm1 determ_nm1 = value return value def triv_determinant_test ( ): #*****************************************************************************80 # ## TRIV_DETERMINANT_TEST tests TRIV_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from triv import triv from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'TRIV_DETERMINANT_TEST' print ' TRIV_DETERMINANT computes the TRIV determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n - 1, r8_lo, r8_hi, seed ) y, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) z, seed = r8vec_uniform_ab ( n - 1, r8_lo, r8_hi, seed ) a = triv ( n, x, y, z ) r8mat_print ( m, n, a, ' TRIV matrix:' ) value = triv_determinant ( n, x, y, z ) print '' print ' Value = %g' % ( value ) print '' print 'TRIV_DETERMINANT_TEST' print ' Normal end of execution.' return def triv_inverse ( n, x, y, z ): #*****************************************************************************80 # ## TRIV_INVERSE returns the inverse of the TRIV matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Reference: # # CM daFonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N-1), Y(N), Z(N-1), the vectors that define # the subdiagonal, diagonal, and superdiagonal of A. # No entry of Y can be zero. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np from r8_mop import r8_mop from sys import exit for i in range ( 0, n ): if ( y[i] == 0 ): print '' print 'TRIV_INVERSE - Fatal error!' print ' No entry of Y can be zero!' exit ( 'TRIV_INVERSE - Fatal error!' ) d = np.zeros ( n ) d[n-1] = y[n-1] for i in range ( n - 2, -1, -1 ): d[i] = y[i] - x[i] * z[i] / d[i+1] e = np.zeros ( n ) e[0] = y[0] for i in range ( 1, n ): e[i] = y[i] - x[i-1] * z[i-1] / e[i-1] a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i + 1 ): p1 = 1.0 for k in range ( j, i ): p1 = p1 * x[k] p2 = 1.0 for k in range ( i + 1, n ): p2 = p2 * d[k] p3 = 1.0 for k in range ( j, n ): p3 = p3 * e[k] a[i,j] = r8_mop ( i + j ) * p1 * p2 / p3; for j in range ( i + 1, n ): p1 = 1.0 for k in range ( i, j ): p1 = p1 * z[k] p2 = 1.0 for k in range ( j + 1, n ): p2 = p2 * d[k] p3 = 1.0 for k in range ( i, n ): p3 = p3 * e[k] a[i,j] = r8_mop ( i + j ) * p1 * p2 / p3 return a def triv_test ( ): #*****************************************************************************80 # ## TRIV_TEST tests TRIV. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'TRIV_TEST' print ' TRIV computes the TRIV matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n - 1, r8_lo, r8_hi, seed ) y, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) z, seed = r8vec_uniform_ab ( n - 1, r8_lo, r8_hi, seed ) a = triv ( n, x, y, z ) r8mat_print ( m, n, a, ' TRIV matrix:' ) print '' print 'TRIV_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triv_test ( ) timestamp ( )