#! /usr/bin/env python # def triw ( alpha, k, n ): #*****************************************************************************80 # ## TRIW returns the TRIW matrix. # # Discussion: # # TRIW is the Wilkinson banded upper triangular matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1 # elseif ( I < J and J <= K + I ) # A(I,J) = ALPHA # else # A(I,J) = 0 # # Example: # # ALPHA = 3, K = 2, N = 5 # # 1 3 3 0 0 # 0 1 3 3 0 # 0 0 1 3 3 # 0 0 0 1 3 # 0 0 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular. # # A is upper triangular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # Adding -2^(2-N) to the (N,1) element makes the matrix singular. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # # Reference: # # Gene Golub, James Wilkinson, # Ill-conditioned eigensystems and the computation of the Jordan # canonical form, # SIAM Review, # Volume 18, Number 4, 1976, pages 578-619. # # W Kahan, # Numerical linear algebra, # Canadian Mathematical Bulletin, # Volume 9, 1966, pages 757-801. # # AM Ostrowski, # On the spectrum of a one-parametric family of matrices, # Journal fuer Reine und Angewandte Mathematik, # Volume 193, Number (3/4), 1954, pages 143-160. # # James Wilkinson, # Singular-value decomposition - basic aspects, # in Numerical Software - Needs and Availability, # edited by DAH Jacobs, # Academic Press, London, 1978, pages 109-135. # # Parameters: # # Input, real ALPHA, the superdiagonal value. # A typical value is -1. # # Input, integer K, the number of nonzero superdiagonals. # A typical value is N-1. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 elif ( i < j and j - i <= k ): a[i,j] = alpha return a def triw_determinant ( alpha, k, n ): #*****************************************************************************80 # ## TRIW_DETERMINANT returns the determinant of the TRIW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, value used on the superdiagonals. # # Input, integer K, the number of nonzero superdiagonals. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def triw_determinant_test ( ): #*****************************************************************************80 # ## TRIW_DETERMINANT_TEST tests TRIW_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # from triw import triw from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'TRIW_DETERMINANT_TEST' print ' TRIW_DETERMINANT computes the determinant of the TRIW matrix.' print '' m = 5 n = m i4_lo = 0 i4_hi = n - 1 seed = 123456789 k, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) r8_lo = -5.0 r8_hi = +5.0 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = triw ( alpha, k, n ) r8mat_print ( m, n, a, ' TRIW matrix:' ) value = triw_determinant ( alpha, k, n ) print '' print ' Value = %g' % ( value ) print '' print 'TRIW_DETERMINANT_TEST' print ' Normal end of execution.' return def triw_inverse ( alpha, k, n ): #*****************************************************************************80 # #% TRIW_INVERSE sets the inverse of the TRIW matrix. # # Example: # # ALPHA = 3, K = 2, N = 5 # # 1 -3 6 -9 9 # 0 1 -3 6 -9 # 0 0 1 -3 6 # 0 0 0 1 -3 # 0 0 0 0 1 # # Properties: # # A is nonsingular. # # A is upper triangular. # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, value used on the superdiagonals. # # Input, integer K, the number of nonzero superdiagonals. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = 1.0 # # Compute the product of row 1 of the inverse with columns 2, # 3,..., N of the original matrix, up to, but not including, # the next unknown entry of the inverse. That unknown entry # is multiplied by 1, and the resulting sum must be zero. # So the unknown entry equals minus the sum of all the # other products. And all the entries along its superdiagonal # have the same value. # for j in range ( 1, n ): prod = 0.0 klo = max ( 0, j - k ) for kk in range ( klo, j ): prod = prod + a[0,kk] * alpha for i in range ( 0, n - j ): a[i,i+j] = - prod return a def triw_test ( ): #*****************************************************************************80 # ## TRIW_TEST tests TRIW. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'TRIW_TEST' print ' TRIW computes the TRIW matrix.' m = 5 n = m i4_lo = 0 i4_hi = n - 1 seed = 123456789 k, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) r8_lo = -5.0 r8_hi = +5.0 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = triw ( alpha, k, n ) r8mat_print ( m, n, a, ' TRIW matrix:' ) print '' print 'TRIW_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triw_test ( ) timestamp ( )