#! /usr/bin/env python # def upshift ( n ): #*****************************************************************************80 # ## UPSHIFT returns the UPSHIFT matrix. # # Formula: # # if ( J-I == 1 mod ( n ) ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # N = 4 # # 0 1 0 0 # 0 0 1 0 # 0 0 0 1 # 1 0 0 0 # # Rectangular properties: # # A is integral: int ( A ) = A. # # A is a zero/one matrix. # # Square Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular. # # A is a permutation matrix. # # If N is even, det ( A ) = -1. # If N is odd, det ( A ) = +1. # # A is unimodular. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is a Hankel matrix: constant along anti-diagonals. # # A is an N-th root of the identity matrix. # # The inverse of A is the downshift matrix. # # A circulant matrix C, whose first row is (c1, c2, ..., cn), can be # written as a polynomial in A: # # C = c1 * I + c2 * A + c3 * A**2 + ... + cn * A**n-1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns # of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np from i4_modp import i4_modp a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i4_modp ( j - i, n ) == 1 ): a[i,j] = 1.0 return a def upshift_condition ( n ): #*****************************************************************************80 # ## UPSHIFT_CONDITION computes the L1 condition of the UPSHIFT matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = 1.0; b_norm = 1.0; value = a_norm * b_norm; return value def upshift_condition_test ( ): #*****************************************************************************80 # ## UPSHIFT_CONDITION_TEST tests UPSHIFT_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from upshift import upshift from r8mat_print import r8mat_print print '' print 'UPSHIFT_CONDITION_TEST' print ' UPSHIFT_CONDITION computes the UPSHIFT condition.' m = 5 n = m a = upshift ( n ) r8mat_print ( m, n, a, ' UPSHIFT matrix:' ) value = upshift_condition ( n ) print ' Value = %g' % ( d ) print '' print 'UPSHIFT_CONDITION_TEST' print ' Normal end of execution.' return def upshift_determinant ( n ): #*****************************************************************************80 # ## UPSHIFT_DETERMINANT computes the determinant of the UPSHIFT matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # if ( ( n % 2 ) == 0 ): value = - 1.0 else: value = 1.0 return value def upshift_determinant_test ( ): #*****************************************************************************80 # ## UPSHIFT_DETERMINANT_TEST tests UPSHIFT_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from upshift import upshift from r8mat_print import r8mat_print print '' print 'UPSHIFT_DETERMINANT_TEST' print ' UPSHIFT_DETERMINANT computes the UPSHIFT determinant.' m = 5 n = m a = upshift ( n ) r8mat_print ( m, n, a, ' UPSHIFT matrix:' ) value = upshift_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'UPSHIFT_DETERMINANT_TEST' print ' Normal end of execution.' return def upshift_inverse ( n ): #*****************************************************************************80 # ## UPSHIFT_INVERSE returns the inverse of the UPSHIFT matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # from downshift import downshift a = downshift ( n ) return a def upshift_test ( ): #*****************************************************************************80 # ## UPSHIFT_TEST tests UPSHIFT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'UPSHIFT_TEST' print ' UPSHIFT computes the UPSHIFT matrix.' m = 5 n = m a = upshift ( n ) r8mat_print ( m, n, a, ' UPSHIFT matrix:' ) print '' print 'UPSHIFT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) upshift_test ( ) timestamp ( )