#! /usr/bin/env python # def vand1 ( n, x ): #*****************************************************************************80 # ## VAND1 returns the VAND1 matrix. # # Formula: # # A(I,J) = X(J)^(I-1) # # Example: # # N = 5, X = ( 2, 3, 4, 5, 6 ) # # 1 1 1 1 1 # 2 3 4 5 6 # 4 9 16 25 36 # 8 27 64 125 216 # 16 81 256 625 1296 # # Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular if, and only if, the X values are distinct. # # det ( A ) = product ( 1 <= I <= N ) ( 1 <= J < I ) ( X(I) - X(J) ). # = product ( 1 <= J <= N ) X(J) # * product ( 1 <= I < J ) ( X(J) - X(I) ). # # A is generally ill-conditioned. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 27, # LC: QA263.G68. # # Nicholas Higham, # Stability analysis of algorithms for solving confluent # Vandermonde-like systems, # SIAM Journal on Matrix Analysis and Applications, # Volume 11, 1990, pages 23-41. # # Parameters: # # Input, integer N, the order of the matrix desired. # # Input, real X(N), the values that define A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n): if ( i == 0 and x[j] == 0.0 ): a[i,j] = 1.0 else: a[i,j] = x[j] ** i return a def vand1_determinant ( n, x ): #*****************************************************************************80 # ## VAND1_DETERMINANT computes the determinant of the VAND1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the parameters. # # Output, real VALUE, the determinant. # value = 1.0; for i in range ( 0, n ): for j in range ( 0, i ): value = value * ( x[i] - x[j] ) return value def vand1_determinant_test ( ): #*****************************************************************************80 # ## VAND1_DETERMINANT_TEST tests VAND1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from vand1 import vand1 from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'VAND1_DETERMINANT_TEST' print ' VAND1_DETERMINANT computes the VAND1 determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = vand1 ( n, x ) r8mat_print ( m, n, a, ' VAND1 matrix:' ) value = vand1_determinant ( n, x ) print '' print ' Value = %g' % ( value ) print '' print 'VAND1_DETERMINANT_TEST' print ' Normal end of execution.' return def vand1_inverse ( n, x ): #*****************************************************************************80 # ## VAND1_INVERSE returns the inverse of the VAND1 matrix. # # Formula: # # A(I,J) = coefficient of X^(J-1) in I-th Lagrange basis polynomial. # # Example: # # N = 5, # X = ( 2, 3, 4, 5, 6 ) # # 15.00 -14.25 4.96 -0.75 0.04 # -40.00 44.67 -17.33 2.83 -0.17 # 45.00 -54.00 22.75 -4.00 0.25 # -24.00 30.00 -13.33 2.50 -0.17 # 5.00 -6.42 2.96 -0.58 0.04 # # Properties: # # The sum of the entries of A is # # 1 - product ( 1 <= I <= N ) ( 1 - 1 / X(I) ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the values that define A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,0] = 1.0 for i in range ( 0, n ): index = 0 for k in range ( 0, n ): if ( k != i ): for j in range ( index + 1, -1, -1 ): a[i,j] = - x[k] * a[i,j] / ( x[i] - x[k] ) if ( 0 < j ): a[i,j] = a[i,j] + a[i,j-1] / ( x[i] - x[k] ) index = index + 1 return a def vand1_test ( ): #*****************************************************************************80 # ## VAND1_TEST tests VAND1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'VAND1_TEST' print ' VAND1 computes the VAND1 matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = vand1 ( n, x ) r8mat_print ( m, n, a, ' VAND1 matrix:' ) print '' print 'VAND1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) vand1_test ( ) timestamp ( )