#! /usr/bin/env python # def vand2 ( n, x ): #*****************************************************************************80 # ## VAND2 returns the VAND2 matrix. # # Discussion: # # This is the Vandermonde matrix with 1's in the first column. # # Formula: # # A(I,J) = X(J)^(J-1) # # Example: # # N = 5, X = ( 2, 3, 4, 5, 6 ) # # 1 2 4 8 16 # 1 3 9 27 81 # 1 4 16 64 256 # 1 5 25 125 625 # 1 6 36 216 1296 # # Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular if, and only if, the X values are distinct. # # det ( A ) = product ( 1 <= I <= N ) ( 1 <= J < I ) ( X(I) - X(J) ). # = product ( 1 <= J <= N ) X(J) # * product ( 1 <= I < J ) ( X(J) - X(I) ). # # A is generally ill-conditioned. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, page 27, # LC: QA263.G68. # # Nicholas Higham, # Stability analysis of algorithms for solving confluent # Vandermonde-like systems, # SIAM Journal on Matrix Analysis and Applications, # Volume 11, 1990, pages 23-41. # # Parameters: # # Input, integer N, the order of the matrix desired. # # Input, real X(N), the values that define A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n): if ( j == 0 and x[i] == 0.0 ): a[i,j] = 1.0 else: a[i,j] = x[i] ** j return a def vand2_determinant ( n, x ): #*****************************************************************************80 # ## VAND2_DETERMINANT computes the determinant of the VAND2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the parameters. # # Output, real VALUE, the determinant. # value = 1.0; for i in range ( 0, n ): for j in range ( 0, i ): value = value * ( x[i] - x[j] ) return value def vand2_determinant_test ( ): #*****************************************************************************80 # ## VAND2_DETERMINANT_TEST tests VAND2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from vand2 import vand2 from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'VAND2_DETERMINANT_TEST' print ' VAND2_DETERMINANT computes the VAND2 determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = vand2 ( n, x ) r8mat_print ( m, n, a, ' VAND2 matrix:' ) value = vand2_determinant ( n, x ) print '' print ' Value = %g' % ( value ) print '' print 'VAND2_DETERMINANT_TEST' print ' Normal end of execution.' return def vand2_inverse ( n, x ): #*****************************************************************************80 # ## VAND2_INVERSE returns the inverse of the VAND2 matrix. # # Formula: # # A(I,J) = coefficient of X^(I-1) in J-th Lagrange basis polynomial. # # Example: # # N = 5, X = ( 2, 3, 4, 5, 6 ) # # 15.00 -40.00 45.00 -24.00 5.00 # -14.25 44.67 -54.00 30.00 -6.42 # 4.96 -17.33 22.75 -13.33 2.96 # -0.75 2.83 -4.00 2.50 -0.58 # 0.04 -0.17 0.25 -0.17 0.04 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the values that define A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): a[0,j] = 1.0 for i in range ( 0, n ): index = 0 for k in range ( 0, n ): if ( k != i ): for j in range ( index + 1, -1, -1 ): a[j,i] = - x[k] * a[j,i] / ( x[i] - x[k] ) if ( 0 < j ): a[j,i] = a[j,i] + a[j-1,i] / ( x[i] - x[k] ) index = index + 1; return a def vand2_plu ( n, x ): #*****************************************************************************80 # ## VAND2_PLU returns the PLU factors of the Vandermonde2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Reference: # # Halil Oruc, George Phillips, # Explicit factorization of the Vandermonde matrix, # Linear Algebra and its Applications, # Volume 315, Number 1-3, 15 August 2000, pages 113-123. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the values that define the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np from complete_symmetric_poly import complete_symmetric_poly p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): p[j,j] = 1.0 l = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i + 1 ): l[i,j] = 1.0 for k in range ( 0, j ): l[i,j] = l[i,j] * ( x[i] - x[k] ) / ( x[j] - x[k] ) u = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( i, n ): u[i,j] = complete_symmetric_poly ( i + 1, j - i, x ) for k in range ( 0, i ): u[i,j] = u[i,j] * ( x[i] - x[k] ) return p, l, u def vand2_test ( ): #*****************************************************************************80 # ## VAND2_TEST tests VAND2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'VAND2_TEST' print ' VAND2 computes the VAND2 matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = vand2 ( n, x ) r8mat_print ( m, n, a, ' VAND2 matrix:' ) print '' print 'VAND2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) vand2_test ( ) timestamp ( )