#! /usr/bin/env python # def wilk03 ( ): #*****************************************************************************80 # ## WILK03 returns the WILK03 matrix. # # Formula: # # 1.0E-10 0.9 -0.4 # 0 0.9 -0.4 # 0 0 1.0E-10 # # Discussion: # # The linear equation under study is # A * X = B, # where A is the 3 by 3 Wilkinson matrix, and # B = ( 0, 0, 1 )' # and the correct solution is # X = ( 0, 4.0E+10 / 9.0, 1.0E+10 ) # # Since the matrix is already in upper triangular form, errors can # occur only in the backsubstitution. # # Properties: # # A is generally not symmetric: A' /= A. # # A is upper triangular. # # det ( A ) = 0.9E-20 # # LAMBDA = ( 1.0E-10, 0.9, 1.0E-10 ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 December 2014 # # Author: # # John Burkardt # # Reference: # # James Wilkinson, # Error Analysis of Direct Methods of Matrix Inversion, # Journal of the Association for Computing Machinery, # Volume 8, 1961, pages 281-330. # # Parameters: # # Output, real A(3,3), the matrix. # import numpy as np a = np.array ( [ \ [ 1.0E-10, 0.9, -0.4 ], \ [ 0.0, 0.9, -0.4 ], \ [ 0.0, 0.0, 1.0E-10 ] ] ) return a def wilk03_condition ( ): #*****************************************************************************80 # ## WILK03_CONDITION returns the L1 condition of the WILK03 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real COND, the L1 condition number. # cond = 1.8 * ( 13.0 * 1.0E+10 / 9.0 ) return cond def wilk03_condition_test ( ): #*****************************************************************************80 # ## WILK03_CONDITION_TEST tests WILK03_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 December 2014 # # Author: # # John Burkardt # from wilk03 import wilk03 from r8mat_print import r8mat_print print '' print 'WILK03_CONDITION_TEST' print ' WILK03_CONDITION computes the condition of the WILK03 matrix.' print '' n = 3 a = wilk03 ( ) r8mat_print ( n, n, a, ' WILK03 matrix:' ) value = wilk03_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'WILK03_CONDITION_TEST' print ' Normal end of execution.' return def wilk03_determinant ( ): #*****************************************************************************80 # ## WILK03_DETERMINANT returns the determinant of the WILK03 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 0.9E-20 return value def wilk03_determinant_test ( ): #*****************************************************************************80 # ## WILK03_DETERMINANT_TEST tests WILK03_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from wilk03 import wilk03 from r8mat_print import r8mat_print print '' print 'WILK03_DETERMINANT_TEST' print ' WILK03_DETERMINANT computes the determinant of the WILK03 matrix.' print '' n = 3 a = wilk03 ( ) r8mat_print ( n, n, a, ' WILK03 matrix:' ) value = wilk03_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'WILK03_DETERMINANT_TEST' print ' Normal end of execution.' return def wilk03_inverse ( ): #*****************************************************************************80 # ## WILK03_INVERSE returns the inverse of the WILK03 matrix. # # Formula: # # 1.0D+10 -1.0D+10 0 # 0 10/9 4/9 * 1.0D+10 # 0 0 1.0D+10 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(3,3), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 1.0E+10, - 1.0E+10, 0.0 ], \ [ 0.0, 10.0 / 9.0, 4.0E+10 / 9.0 ], \ [ 0.0, 0.0, 1.0E+10 ] ] ) return a def wilk03_rhs ( ): #*****************************************************************************80 # ## WILK03_RHS returns the right hand side of the WILK03 linear system. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real B(3,1), the right hand side of the system. # import numpy as np b = np.array ( [ [ 0.0 ], [ 0.0 ], [ 1.0 ] ] ) return b def wilk03_solution ( ): #*****************************************************************************80 # ## WILK03_SOLUTION returns the solution of the WILK03 linear system. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(3,1), the solution of the linear system. # import numpy as np x = np.array ( [ [ 0.0 ], [ 4.0E+10 / 9.0 ], [ 1.0E+10 ] ] ) return x def wilk03_test ( ): #*****************************************************************************80 # ## WILK03_TEST tests WILK03. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'WILK03_TEST' print ' WILK03 computes the WILK03 matrix.' n = 3 a = wilk03 ( ) r8mat_print ( n, n, a, ' WILK03 matrix:' ) print '' print 'WILK03_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) wilk03_test ( ) timestamp ( )