#! /usr/bin/env python # def wilk12 ( ): #*****************************************************************************80 # ## WILK12 returns the WILK12 matrix. # # Formula: # # 12 11 0 0 0 0 0 0 0 0 0 0 # 11 11 10 0 0 0 0 0 0 0 0 0 # 10 10 10 9 0 0 0 0 0 0 0 0 # 9 9 9 9 8 0 0 0 0 0 0 0 # 8 8 8 8 8 7 0 0 0 0 0 0 # 7 7 7 7 7 7 6 0 0 0 0 0 # 6 6 6 6 6 6 6 5 0 0 0 0 # 5 5 5 5 5 5 5 5 4 0 0 0 # 4 4 4 4 4 4 4 4 4 3 0 0 # 3 3 3 3 3 3 3 3 3 3 2 0 # 2 2 2 2 2 2 2 2 2 2 2 1 # 1 1 1 1 1 1 1 1 1 1 1 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # det ( A ) = 1. # # A is lower Hessenberg. # # The smaller eigenvalues are very ill conditioned. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Reference: # # James Wilkinson, # Rounding Errors in Algebraic Processes, # Prentice Hall, 1963, # page 151. # # Parameters: # # Output, real A(12,12), the matrix. # import numpy as np n = 12 a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j <= i + 1 ): a[i,j] = n - max ( i, j ) return a def wilk12_condition ( ): #*****************************************************************************80 # ## WILK12_CONDITION returns the L1 condition of the WILK12 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = 78.0 b_norm = 87909427.13689443 value = a_norm * b_norm return value def wilk12_determinant ( ): #*****************************************************************************80 # ## WILK12_DETERMINANT returns the determinant of the WILK12 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def wilk12_determinant_test ( ): #*****************************************************************************80 # ## WILK12_DETERMINANT_TEST tests WILK12_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from wilk12 import wilk12 from r8mat_print import r8mat_print print '' print 'WILK12_DETERMINANT_TEST' print ' WILK12_DETERMINANT computes the determinant of the WILK12 matrix.' print '' n = 12 a = wilk12 ( ) r8mat_print ( n, n, a, ' WILK12 matrix:' ) value = wilk12_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'WILK12_DETERMINANT_TEST' print ' Normal end of execution.' return def wilk12_eigen_right ( ): #*****************************************************************************80 # ## WILK12_EIGEN_RIGHT returns the right eigenvectors of the WILK12 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(12,12), the right eigenvector matrix. # import numpy as np x = np.array ( [ \ [ 0.075953934362606, 0.139678536121698, \ 0.212972721043730, 0.286424756003626, \ 0.349485357102525, 0.392486174053140, \ 0.408397328102426, 0.393960067241308, \ 0.350025473229225, 0.281131870150006, \ 0.194509944233873, 0.098787565402021 ], \ [ 0.047186270176379, 0.035170881219766, \ -0.019551243493406, -0.113663824929275, \ -0.229771631994320, -0.342302599090153, \ -0.425606879283194, -0.461118871576638, \ -0.441461339130489, -0.370865208095037, \ -0.262574394436703, -0.134619530658877 ], \ [ 0.087498415888682, 0.002474434526797, \ -0.095923839958749, -0.124601769209776, \ -0.044875899531161, 0.121565513387420, \ 0.312274076477727, 0.458792947263280, \ 0.515554022627437, 0.471997957002961, \ 0.348267903145709, 0.181505588624358 ], \ [ 0.356080027225304, -0.163099766915005, \ -0.325820728704039, -0.104423010988819, \ 0.176053383568728, 0.245040317292912, \ 0.069840787629820, -0.207165420169259, \ -0.418679217847974, -0.475318237218216, \ -0.383234018094179, -0.206444528035974 ], \ [ -0.709141914617340, 0.547208974924657, \ 0.370298143032545, -0.087024255226817, \ -0.174710647675812, -0.026657290116937, \ 0.077762060814618, 0.057335745807230, \ -0.018499801182824, -0.070417566622935, \ -0.072878348819266, -0.042488463457934 ], \ [ -0.713561589955660, 0.677624765946043, \ 0.144832629941422, -0.095987754186127, \ -0.033167043991408, 0.015790103726845, \ 0.009303310423290, -0.002909858414229, \ -0.003536176142936, 0.000317090937139, \ 0.002188160441481, 0.001613099168127 ], \ [ 0.694800915350134, -0.717318445412803, \ -0.021390540433709, 0.047257308713196, \ 0.000033398195785, -0.003862799912030, \ 0.000145902034404, 0.000419891505074, \ -0.000039486945846, -0.000069994145516, \ 0.000013255774472, 0.000029720715023 ], \ [ 0.684104842982405, -0.728587222991804, \ 0.028184117194646, 0.019000894182572, \ -0.002364147875169, -0.000483008341150, \ 0.000145689574886, 0.000006899341493, \ -0.000009588938470, 0.000001123011584, \ 0.000000762677095, -0.000000504464129 ], \ [ 0.679348386306787, -0.732235872680797, \ 0.047657921019166, 0.006571283153133, \ -0.001391439772868, 0.000028271472280, \ 0.000025702435813, -0.000004363907083, \ -0.000000016748075, 0.000000170826901, \ -0.000000050888575, 0.000000010256625 ], \ [ 0.677141058069838, -0.733699103817717, \ 0.056254187307821, 0.000845330889853, \ -0.000600573479254, 0.000060575011829, \ -0.000000899585454, -0.000000703890529, \ 0.000000147573166, -0.000000020110423, \ 0.000000002229508, -0.000000000216223 ], \ [ 0.675994567035284, -0.734406182106934, \ 0.060616915148887, -0.002116889869553, \ -0.000112561724387, 0.000026805640571, \ -0.000002875297806, 0.000000236938971, \ -0.000000016773740, 0.000000001068110, \ -0.000000000062701, 0.000000000003446 ], \ [ -0.675318870608569, 0.734806603365595, \ -0.063156546323253, 0.003858723645845, \ -0.000198682768218, 0.000009145253582, \ -0.000000387365950, 0.000000015357316, \ -0.000000000576294, 0.000000000020662, \ -0.000000000000713, 0.000000000000023 ] ] ); x = np.transpose ( x ) return x def wilk12_eigenvalues ( ): #*****************************************************************************80 # ## WILK12_EIGENVALUES returns the eigenvalues of the WILK12 matrix. # # Formula: # # 32.2288915 # 20.1989886 # 12.3110774 # 6.96153309 # 3.51185595 # 1.55398871 # 0.643505319 # 0.284749721 # 0.143646520 # 0.081227659240405 # 0.049507429185278 # 0.031028060644010 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAM(12), the eigenvalues. # import numpy as np lam = np.array ( [ \ [ 32.2288915 ], \ [ 20.1989886 ], \ [ 12.3110774 ], \ [ 6.96153309 ], \ [ 3.51185595 ], \ [ 1.55398871 ], \ [ 0.643505319 ], \ [ 0.284749721 ], \ [ 0.143646520 ], \ [ 0.081227659240405 ], \ [ 0.049507429185278 ], \ [ 0.031028060644010 ] ] ) return lam def wilk12_test ( ): #*****************************************************************************80 # ## WILK12_TEST tests WILK12. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'WILK12_TEST' print ' WILK12 computes the WILK12 matrix.' n = 12 a = wilk12 ( ) r8mat_print ( n, n, a, ' WILK12 matrix:' ) print '' print 'WILK12_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) wilk12_test ( ) timestamp ( )